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Abstract –A novel application of neural network approach to 
protection of transmission line is demonstrated in this paper.  
Different system faults on a protected transmission line 
should be detected and classified rapidly and correctly. This 
paper presents the use of neural networks as a protective 
relaying pattern classifier algorithm. The proposed method 
uses current signals to learn the hidden relationship in the 
input patterns. Using the proposed approach, fault detection, 
classification and faulted phase selection could be achieved 
within a quarter of cycle. An improved performance is 
experienced once the neural network is trained sufficiently 
and suitably, thus performing correctly when faced with 
different system parameters and conditions. Results of 
performance studies show that the proposed neural network- 
based module can improve the performance of conventional 
fault selection algorithms. 
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I. INTRODUCTION 

In an electric power system comprising of different 
complex interacting elements, there always exists a 
possibility of disturbance and fault. The advent of large 
generating stations and highly interconnected power 
systems makes early fault detection and rapid equipment 
isolation imperative to maintain system stability. Faults on 
power system transmission lines need to be detected and 
located rapidly, classified correctly and cleared as fast as 
possible. Fault detector module of a transmission line 
protective scheme can be used to start other relaying 
modules. Fault detectors provide an additional level of 
security in a relaying application as well. 

Application of a pattern recognition technique could be 
useful in discriminating between power system healthy 
and/or faulty states. It could also be used to distinguish 
which of the phases of a three phase power system is 
faulty. Artificial Neural Networks (ANNs) are powerful in 
pattern recognition and classification. Consequently, 
various ANN-based algorithms have been investigated and 
implemented in power systems in recent years [1].  

A well developed protective scheme should perform 
well for different system conditions and parameters. ANNs 
possess excellent features such as generalization capability, 
noise immunity, robustness and fault tolerance. Therefore, 
the decision made by an ANN-based relay would not be 
seriously affected by variations in system parameters. 
ANN-based techniques have been used in power system 
protection and encouraging results are obtained [1-6]. 

In this paper, a new scheme is proposed for fast and 
reliable fault detection and phase selection. The proposed 
method uses an artificial neural network-based scheme. 
Various transient system faults are modeled and an ANN- 
based algorithm is used for recognition of these patterns.  

Performance of the proposed scheme is evaluated using 
various fault types and encouraging results are obtained. It 
is shown that the algorithm is able to perform fast and 
correctly for different combinations of fault conditions, 
e.g. fault type, fault resistance, fault inception angle, fault 
location, prefault power flow direction and system short 
circuit level. 

II. FAULT TYPE CLASSIFIERS 

Conventional fault detection algorithms are designed 
based on current or voltage magnitude measurements [7,8]. 
Increase of current magnitude or decrease of 
voltage/impedance magnitude could be considered as a 
measure to detect a system fault. These algorithms are 
dependent on various factors such as fault resistance and 
power system short circuit capacity. 

Current based starters get confused when load current is 
significant compared to fault current. Conventional 
overcurrent based starters may not be able to detect faults 
with high amount of fault resistance. For remote low 
current faults, no clear undervoltage condition arises at the 
relay location. In the case of a close-in fault on a weak 
system, all voltages deviate from the nominal value. 
Therefore, the voltage based starters might not be able to 
perform correctly for different fault conditions.  

For the conventional based fault detectors, current and 
voltage magnitudes should be estimated correctly using 
appropriate filtering algorithms. When a fault happens on a 
transmission line, the power system goes through a 
transient period. It might not be easy to determine 
current/voltage signal magnitude fast and precisely during 
the transient period after the occurrence of the fault. 

As power systems grow both in size and complexity, it 
becomes necessary to identify different system faults faster 
and more accurately using more powerful algorithms. It 
would be desirable to design a reliable and fast algorithm 
to classify different power system faults for various system 
parameters and fault states. An ANN-based algorithm in 
proposed in this paper as a transmission line fault detector 
and fault type classifier module. 
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III. POWER NETWORK SIMULATION 

A 230 kV power system is simulated using EMTDC 
electromagnetic transient program and various types of 
faults with different system conditions and parameters are 
modeled [9]. The one-line diagram of the studied system is 
shown in Fig. 1. Short circuit capacity of the equivalent 
Thevenin sources on two sides of the line is considered to 
be 1.25 GVA. Sources  Zo/Z1 ratio and X/R ratio are 0.5 
and 10, respectively. 

The system transmission line is simulated using Bergron 
model. The physical structure of the modeled transmission 
line is shown in Fig. 2.  

The training data set of an ANN should contain the 
necessary information to generalize the problem. 
Combinations of different fault conditions were considered 
and training patterns were generated by simulating 
different kinds of faults on the power system. Fault type, 
fault location, fault resistance and fault inception time were 
changed to obtain training patterns covering a wide range 
of different power system conditions. The simulated 
training data set was used to train the ANN-based selector 
module. 
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Fig. 1  Power system model 
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Fig. 2  Modeled transmission line structure 

IV. THE PROPOSED NEURAL NETWORK 

A. Network Inputs 

Measured currents at the relay location are subject to 
change when a fault occurs on a transmission line. Fault 
detection/classification principle may be based upon 
detecting these changes.  The principle of variation of 
current signals before and after the fault incidence is used 
and a fast and reliable ANN-based fault detector/classifier 
module is designed to detect the fault and classify the fault 
type. 

Current waveform signals are sampled at a rate of 20 
samples per cycle. Samples of each of the phase currents 
are compared with the samples of the same phase current 
taken half cycle and one cycle before. These superimposed 
signals are made based on the combination of the current 
samples using equations 1-3. In these equations SupA, 
SupB and SupC correspond to phases A, B and C 
superimposed signals, respectively. The resultant three 
superimposed signals are considered as the first three 
inputs to the designed neural network module.  
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In equations 1-3 n is the sample number and N is the 
number of samples per cycle. 

There is a chance that one cycle after occurrence of a 
fault, the second cycle fault signals become similar to the 
first cycle signals and therefore, superimposed signals 
might decrease considerably. To have stable outputs for a 
few cycles after occurrence of a fault, one cycle of data 
from each of the phase currents prior to the fault incidence 
is stored in the memory. One cycle after the occurrence of 
a fault, fault current samples are compared to the prior to 
fault current samples based on the same principle used in 
equations 1-3.  

Extensive studies were performed and it was found that 
to be able to design a reliable fault selector scheme which 
could perform correctly for a wide range of power system 
parameters and fault conditions, it is better to add zero and 
negative sequence components of the three phase currents 
as the neural network inputs. These two signals are 
considered as the 4th and 5th inputs of the designed 
network, respectively.  

Using the above input information as the neural network 
inputs, it was found that the fault detector algorithm is also 
able to detect fault type changes and behave correctly even 
for evolving sequential faults.  

 

B. Patterns Generation and Preprocessing 

The simulated power system data obtained through 
EMTDC software simulation are used as the input 
information to train the proposed neural network. Network 
training pattern generation process is depicted in Fig. 3.  

Preprocessing is a useful method which can significantly 
reduce the size of the neural networks based classifiers and 
improve the performance and speed of training   process 
[10]. Three phase current input signals were processed by 
simple 2nd-order low-pass Butterworth filters. The filters 
had a cut-off frequency of 400 Hz which introduces just a 
small time delay. The low-pass filter frequency response is 
shown in Fig. 4. 

Phase current signals are sampled consecutively and the 
superimposed inputs of the network are prepared using 
equations 1-3. To make zero and negative signal inputs of 
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the network, discrete Fourier transform method is used to 
obtain currents phasors and then, sequence components are 
estimated. 

Current samples are scaled to have a maximum value of 
+1 and a minimum value -1. The current signals are 
divided by the six times of the nominal current of the 
system. 
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Fig. 3 Training pattern generation process  
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Fig. 4 Butterworth low-pass filter frequency response  

C. Network Structure and Training 

Multilayer feedforward networks were chosen to process 
the prepared input data. A few different networks were 
selected initially. For designing the fault selector based 
neural network, different networks with 5 inputs and 4 
outputs were considered. Four different A, B, C and N 
outputs were considered to determine whether each of the 
three phases A, B, C and/or neutral N are present in the 
fault loop.  

The networks’ architectures were decided empirically 
which involved training and testing different number of 
networks. Three layer networks were found to be 
appropriate for the fault selector application. For all the 
networks, hyperbolic tangent function was used as the 
activation function of the hidden layer neurons. Saturated 
linear function was used for the output layer [10]. 

Various networks with different number of neurons in 
their hidden layer were trained with both conventional 
Back-Propagation (BP) and Marquardt-Levenberg (ML) 
algorithms [11]. While BP is a steepest descent algorithm, 
ML algorithm is an approximation to the Newton’s 
method. The ML algorithm is a nonlinear least square 
algorithm applied to learning of the multilayer perceptrons. 
It was found that the networks trained with the ML 
algorithm provide better results compared with the results 
of the networks trained with the BP algorithm. Therefore, 
it was decided to use the ML training algorithm for this 
application. 

D. Proposed ANN Structure 

Once trained, the networks performance was tested 
using a validation data set. The suitable network which 
showed satisfactory results was finally selected. The 
selected network structure is shown in Fig. 5. The network 
has 5 normalized inputs and 4 outputs. The number of 
neurons for the hidden layer is chosen to be 10 neurons. 
Based on the fault type which occurs on the system, output 
neurons should be 0 or 1. Outputs which are greater than 
0.7 are considered to be active, while outputs less than 0.3 
are considered to be inactive. Neural network desired 
outputs for different types of faults are shown in Table I. 
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Fig. 5 The proposed network structure 

Table I Neural network desired outputs 

N C B A Fault 
Type 

1 0 0 1 AG 

1 0 1 0 BG 

1 1 0 0 CG 

0 0 1 1 AB 

0 1 1 0 BC 

1 1 0 1 CA 

1 0 1 1 ABG 

1 1 0 1 ACG 

1 1 1 0 BCG 

0 1 1 1 ABC 

V. NETWORK EVALUATION 

The designed neural network-based fault detector/phase 
selector module was tested using a validation data set. For 
different faults of the validation set, fault type, fault 
location, fault inception time, source impedance and pre-
fault power flow direction were changed to investigate the 
effects of these factors on the performance of the proposed 
algorithm. Extreme cases like faults near to the end of 
transmission line including fault resistance were also 
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included in the validation data set. For the studies 
performed, it was found that the proposed network is able 
to correctly detect different kinds of faults and to 
determine the fault type.  

The proposed network outputs for a double phase AB 
fault are shown in Fig. 6. For this case, a fault is applied to 
the system at the time 57 ms and the network outputs are 
shown for about the first 50 ms after the fault inception 
which is of utmost interest. The fault location was 83 km 
from the relay location, while the relative angle of the 
sending-end source with respect to the angle of the 
receiving-end source was 10 degrees. As shown in this 
figure, the network is able to respond to the fault correctly 
in a timely fashion. The fault is identified just in a few ms 
which shows that the network is able to detect and classify 
the fault quite fast. The network outputs remain stable after 
identifying the fault.       

Network outputs for an evolving short circuit fault at 80 
km are presented in Fig. 7. For this sequential fault, first a 
single phase to ground AG fault is applied and the fault is 
identified correctly. Then, at the time 68 ms the fault is 
changed to a double phase to ground ABG fault. As shown 
in Fig. 7, the network responds to this change accordingly.  

The proposed network performance for a few faults with 
different power system conditions is presented in Table II. 
As an example, test results for a single phase to ground AG 
fault at 20 km from the relay location is presented in the 
first row of Table II. For this fault, the relative angle of the 
sending–end source with respect to the angle of the 
receiving-end source, ∆ was -10 deg.  The fault inception 
angle Θ with respect to phase A voltage zero crossing was 
30 deg and the source impedance Zs was considered to be 
12 Ω.  
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Network outputs for two different amounts of fault 
resistance are shown in the last columns of the table. For 
the above AG fault, the A and N outputs of the network are 
activated while the B and C outputs remain zero.  

For the faults which do not involve ground, fault 
resistance is not a critical factor. For these types of faults 
usually fault detectors could detect the fault more easily. 
Therefore, in Table II the main emphasis is for the faults 
which involve ground as well.  

As shown in Table II, the relay performs quite reliably 
for a wide variety of fault types and system conditions. For 
the faults including high amount of fault resistance, 
conventional fault detectors response is slow in nature and 
even they might not be able to detect the fault due to low 
level of fault current. However, designed network could 
perform well even in the presence of considerable amount 
of fault resistance.  

As an example, the network response for a CG fault at 
the end of the transmission line with 20 Ω fault resistance 
is shown at one row before the last row of Table II. For 
this case, the source impedance is high as well, so the 
system fault level is quite low. The fault is identified 
correctly as shown in Table II even for this fault which has 
low level of fault current.  

Performance of the proposed scheme is evaluated using 
various fault types and encouraging results are obtained. It 
was shown that the algorithm was able to perform fast and 
correctly for different combinations of fault conditions, 
e.g. fault type, fault resistance, fault inception angle, fault 
location, prefault power flow direction and system short 
circuit level. 
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Fig. 6 Network outputs for a fault at 83 km 
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Fig. 7 Network outputs for an evolving fault 

 

Table II   Proposed algorithm test results 
 

 

VI. CONCLUSIONS 

In this paper a new approach to fault detection/phase 
selection algorithm is presented and its effectiveness is 
demonstrated. The suggested approach is based on the 
use of neurocomputing technology and implementation 
of pattern recognition concepts. The paper presents a 
positive approach to improve the performance of 
conventional algorithms. 

The proposed algorithm is extensively tested by 
independent test fault patterns and promising results are 
obtained. Effects of different system parameters and 
conditions is studied. Extensive studies indicate that the 
network is able to classify different faults correctly and 

rapidly and its performance is not affected by the 
changing network conditions. 
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