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Abstract—Vector Fitting (VF) can be useful for approximating
system equations of multi-conductor transmission lines and cables
based on the Universal Line Model (ULM). However, one of
the challenges posed by this technique is the additional com-
putational logic required to evaluate the time-delays associated
with the modal propagation functions, prior to arriving at a
suitable system identification. This study examines Magnitude
Vector Fitting (magVF) as an alternative to VF, contributing
detailed implementation procedures and theoretical explanations.
In addition to demonstrating the utility of magVF for simplifying
the computation of the modal function magnitudes, a modification
of the magVF algorithm is provided, synthesizing the approach of
Weighted Vector Fitting (WVF) to produce Weighted Magnitude
Vector Fitting (WmagVF). Test results are given fitting actual
power system frequency spectrum data.

Keywords—Electromagnetic transients, frequency response,
least squares approximation, modal analysis, system identifica-
tion, transmission line matrix methods.

I. INTRODUCTION

Vector Fitting (VF) [1] has been included in EMT-type
programs for a little more than a decade now. It has been
utilized for the approximation of modal propagation functions
based on the Universal Line Model (ULM) [2]. One of
the challenges imposed by using VF in that context is the
additional iterative logic required for pre-determination of the
time delays associated with each modal propagation function.
This study examines Magnitude Vector Fitting (magVF) [3]
as an alternative to VF for the system approximation that
simplifies the procedure of time-delay determination, and
presents some new modifications to the algorithm. A Weighted
Magnitude Vector Fitting (WmagVF) procedure is introduced
employing techniques that are analogous to those used for
deriving Weighted Vector Fitting (WVF) [4]. An iterative
pole modification technique is also proposed for the fitting
of smooth functions. Finally, this study provides and discusses
experimentally derived results and opens avenues for future
scientific explorations.
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A. The Universal Line Model (ULM) and modal decomposi-
tion of transmission lines and cables

Using distributed parameters, transmission line and cable
voltage-current characteristics are described by the Universal
Line Model (ULM) using two phase domain matrix transfer
functions, namely the propagation matrix H and characteristic
admittance matrix Yc, which are given as

H = e−
√

YZl , and (1)

Yc = Z−1
√

ZY, (2)

where l indicates the length of the line [5], [2]. The matrices
Y and Z are, respectively, the shunt admittances and series
impedances per unit length. These matrices are of size Nc×Nc
where Nc is the number of conductors in the line.

The propagation and characteristic admittance transfer func-
tions allow the calculation of the voltage (V) and current (I)
at two ends s and r of a transmission line as shown below

Ir = YcVr−H(YcVs + Is) (3)

Is = YcVs−H(YcVr + Ir) (4)

These equations are in the steady-state frequency domain, and
time-domain results can also be obtained via inverse Fourier
transformations.

Furthermore, via modal decomposition, it is possible to
represent the MIMO propagation transfer function H through
its modal propagation functions Hm where m = 1, 2, ..., Nc.
The problem then gets simplified to fitting each of the modal
propagation functions as a decoupled SISO system transfer
function with a delay, in the form

Hm = H ′me− jωτm (5)

where τm signifies the associated time delay for the modal
domain equation H ′m corresponding with mode m, which is
proposed to be a minimum phase system [2].

By the residue-pole form that is output from the VF method,
H ′m is

H ′m =
Nm

∑
n=1

cn

jω− pn

where Nm is the order of the approximation (number of poles)
used for mode m.



In [2] it is proposed that the poles of Hm – and hence its
minimum phase component H ′m – are the same as the poles
used to reconstruct H as a MIMO system matrix. Supposing
that there are Nm poles for the transfer function of mode m,
and that there are Nc modes in total (which usually corresponds
with the number of conductors, hence the subscript c), then,
getting back to the frequency domain from the modal domain
involves recomposing the MIMO propagation function as
follows.

H∼=
Nc

∑
m=1

(
Nm

∑
n=1

Cnm

s− pnm

)
e−sτm (6)

Once a poles-residues series form of the minimum-phase
H ′m with the associated time delay τm has been established, then
finding the residues Cnm can be done using overdetermined
linear systems equations with partial fraction basis functions
for another set of linear least squares problems.

II. TRANSFER FUNCTION IDENTIFICATION FROM
TABULATED FREQUENCY RESPONSE

For the uninitiated reader, it may be useful to provide some
context as to how the fitting algorithms described in this study
are generally used. Essentially, the goal is to provide a Laplace
domain LTI transfer function represented by F̃(sk) that can
closely approximate the tabulated frequency response of a
given system vector F(sk) over a frequency sequence sk = jωk
where k = 1,2, ...,K.

Representing this system function in terms of a partial
fraction series with direct (G) and proportional (E) terms, at
each frequency point k, is the equation

F̃(sk) =
N

∑
n=1

rn

sk− pn
+ skE +G≈ F(sk) , (7)

with pn as either real or one of a pair of complex conjugate
poles, and rn the corresponding residue term. Note that F̃(s)
can also be expressed as in equivalent pole-zero-gain form as

F̃(s) =
Ñ(s)

D̃(s)
= F0

M
∏

m=1
(s− zm)

N
∏

n=1
(s− pn)

, (8)

where F0 is a constant real gain, zm represents one of the M
zeros, and pn represents one of the N poles.

Supposing a strictly proper transfer function order such that
M < N, then when represented by partial fractions, the E and
D terms in (7) are null and can be ignored.

So, given K frequency response data points with frequency
samples sk = jωk, (7) and (8) yield the following cost function
minimization problem when trying to approximate F(sk):

min
K

∑
k=1

∣∣∣∣∣F(sk)−
Ñ(sk)

D̃(sk)

∣∣∣∣∣
2

. (9)

Equivalently,

min
K

∑
k=1

1∣∣∣D̃(sk)
∣∣∣2
∣∣∣F(sk)D̃(sk)− Ñ(sk)

∣∣∣2 . (10)

Note that (10) is non-linear and solvable within a desired
margin of error using constrained optimization techniques.
Such solutions, however, are computationally demanding when
compared to those of linearized overdetermined least squares
problems.

A. The Vector Fitting (VF) algorithm

The VF method [1] proposes a linearized method for
identifying F(s) in the least squares sense. Supposing that

F(s)∼=
Ñ(s)

D̃(s)
=

N
∑

n=1

r̂n
s−p̄n

+ sE +G

N
∑

n=1

r̃n
s−p̄n

+1
, (11)

given that

Lim
s→∞

(
N

∑
n=1

r̃n

s− p̄n

)
= 0, (12)

the VF algorithm then transforms (11) into

N

∑
n=1

r̂n

s− p̄n
+ sE +G−

(
N

∑
n=1

r̃n

s− p̄n

)
F(s)∼= F(s). (13)

Given a sufficiently large number of frequency response data
points for F(sk), the unknowns to be discovered are the residue
terms r̂n, r̃n, the poles p̄n, and the direct and proportional
terms, G and E, respectively. Solving for these is accomplished
iteratively using a series of two overdetermined linear solutions
by the least-squares method. These two main stages are known
as the pole relocation and residue identification steps. A set of
initial poles is selected to commence the procedure. At the end
of each iteration, a new set of poles and residues are provided
that can be used to test for convergence. The details of the
formulation for these steps under VF is provided in [1].

The VF method can converge relatively quickly and accu-
rately depending on the function to be fitted and the initial
poles selected, however improvements have been made to this
algorithm since its publication, specifically to resolve issues of
ill-conditioning and convergence oscillation.

B. The Weighted Vector Fitting (WVF) algorithm

The Weighted Vector Fitting (WVF) technique involves the
use of an inherent weighting term that updates after each
fitting iteration [4], [6]. This weighting term enforces that the
linearization step is more precise. For instance, in VF, the
algorithm goes from the nonlinear expression of (10) to the
linear expression (11) using

F(s)∼=
Ñ(s)

D̃(s)
(14)

Ñ(s)− D̃(s)F(s)∼= 0. (15)

However in WVF, the step taken by (15) is considered to
be a source of error due to numerical inaccuracies inherent
in the way the approximation equality is treated. Instead, a



stricter approach is suggested in order to yield a more precise
approximation for the basis functions, as follows, replacing
(15) with:

Ñ(s)

D̃(s)
−F(s)∼= 0 (16)

Ñ(s)

D̃(s)
−F(s)

D̃(s)

D̃(s)
∼= 0 (17)

1

D̃(s)

[
N(s)− F̃(s)D̃(s)

]
∼= 0. (18)

Note that the effect of the term 1
D̃(s)

in (21) is analogous to

that of 1

|D̃(sk)|2
from (10). Whereas in VF that term is ignored

and set to unity, in WVF it is retained and updated iteratively.
For compactness of the expression, let the proportional and

direct terms – which are only necessary for non-proper transfer
functions – be replaced by the function

α̃(s) = sE +G. (19)

In the iterative context of the fitting procedure, let i denote
the i-th iteration, with W̃ (sk) and D̃(sk) denote weighting terms
for the current and next iteration such that

W̃ (i)(sk) =
N

∑
n=1

r̃(i−1)
n

sk− p̄(i−1)
n

+1 = D̃(i−1)(sk). (20)

Then, in WVF, going from the VF equation (11) the
minimization problem becomes

min

∣∣∣∣∣ 1

W̃ (i)(sk)

[
N

∑
n=1

r̂(i)n

sk− p̄(i)n

+ α̃(sk)− D̃(i)(sk)F(s)

]∣∣∣∣∣ . (21)

In [4] this iterative weighting technique has been demon-
strated to alleviate problems of ill-conditioning and poor fitting
that is otherwise present due to overemphasis on low frequency
samples.

C. The Magnitude Vector Fitting (magVF) algorithm

Magnitude Vector Fitting is a more recent modification
to VF that uses a symmetric partial fraction basis for the
formulation of the overdetermined linear system equations to
fit a magnitude-squared frequency response. The derivation
presented in this section follows that of [3], in which the
abbreviation magVF was first used.

Again, letting F(s) be a Laplace transform of the impulse
response f (t) of a causal and stable LTI system. In product
form, F(s) can be represented by

F(s) = F0

M
∏

m=1
(s− zm)

N
∏

n=1
(s− pn)

, (22)

where F0 is the positive and real ‘DC gain’, zm refers to each
of the M zeros, and pn refers to each of the N poles. For
realizable bounded systems the order of the numerator (M)

and denominator (N) are such that the system is either proper
(M = N) or strictly proper (M < N).

Taking the Fourier Transform by resolving F(s) on the
imaginary axis, such that F(s)|s= jω = F( jω) and by complex
number properties:

|F( jω)|2 = F( jω)F∗( jω). (23)

The magnitude-squared can also be expressed as

|F( jω)|2 = F2
0

M
∏

m=1
( jω− zm)(− jω− z∗m)

N
∏

n=1
( jω− pn)(− jω− p∗n)

, (24)

or by pulling out a negative sign, as

|F( jωk)|2 = (−1)(M−N)F2
0

M
∏

m=1
( jωk− zm)( jωk + zm)

N
∏

n=1
( jωk− pn)( jωk + pn)

(25)

Note the assumption that all poles and zeros are either
purely real or present in complex-conjugate pairs. Provided
that this caveat is held true, by (25) it is evident that the
magnitude-squared function is composed of poles and zeros
in the left hand s-plane (LHP) as well as their symmetric
counterparts in the right hand s-plane (RHP).

The problem thence assumes that there is a set |F( jωk)|2
of tabulated data of size K frequency-domain points for which
an approximated transfer function that yields |F̃( jωk)|2 w
|F( jωk)|2 is desired. Given the magnitude-squared form of
(25), and then under the assumption that all poles and zeros
are in the left hand s-plane – as is the case for minimum phase
functions by definition – it is possible to eliminate the right-
hand plane poles and zeros and, taking the square root of the F0
term, to reduce the magnitude-squared to a simple magnitude
approximation such that the non-squared magnitude response
can be inferred.

|F( jωk)|= F0

M
∏

m=1
| jωk− zm|

N
∏

n=1
| jωk− pn|

w |F̃( jωk)| (26)

Furthermore, (25) can also be represented in the following
symmetrical partial-fractions form:

|F( jωk)|2 = r0 +
N

∑
n=1

(
rn

jωk− pn
− rn

jωk + pn

)
, (27)

noting that r0 = 0 when M < N and r0 = F2
0 when M = N.

Applying the standard VF method to the magnitude-squared
function above leads to some problems with asymmetrically
perturbed poles and residues. To counter this, the use of
symmetric basis functions as a modification to VF has been
suggested [3], [7] and provided in the following steps.



D. Weighted magVF (WmagVF) formulation

In this section, the formulation of the proposed Weighted
Magnitude Vector Fitting (WmagVF) algorithm is demon-
strated.

Taking the symmetric basis functions in the numerator and
denominator for the case where M < N,

|F(s)|2 ∼=

N
∑

n=1

(
ĉn

s+p̄n
− ĉn

s+p̄n

)
N
∑

n=1

(
c̃n

s+p̄n
− c̃n

s+p̄n

)
+1

. (28)

Where,

|F(s)|2 ∼=
|Ñ(s)|2

|D̃(s)|2
. (29)

Then,
|Ñ(s)|2

|D̃(s)|2
−|F(s)|2 ∼= 0 (30)

|Ñ(s)|2

|D̃(s)|2
−|F(s)|2 |D̃(s)|2

|D̃(s)|2
∼= 0 (31)

1

|D̃(s)|2
(
|Ñ(s)|2−|F(s)|2|D̃(s)|2

)
∼= 0 (32)

Now using an analogous approach as in WVF, including a
weighting factor W̃ ( jωk) that is composed of |D̃( jωk)|2 from
the previous iteration

W̃ (i)( jωk) =
N

∑
n=1

(
c̄(i−1)

n

jωk− p(i−1)
n

− c̄(i−1)
n

jωk + p(i−1)
n

)
+1

= |D̃(i−1)( jωk)|2, (33)

and
1

W̃ (i)( jωk)

[
|Ñ(i)( jωk)|2−|F( jωk)|2|D̃(i)( jωk)|2

]
w 0. (34)

For the first iteration let W̃ (i)( jωk) = 1 for all k. Subse-
quently, at the end of each iteration compute the next weighting
term from |D̃(i)( jωk)|2, as W̃ (i+1)( jωk). This value is used at
each iteration to scale the k-th row of elements of equations
represented by matrix A and right-hand side vector b from the
equation Ax = b in the pole relocation step prior to solving
for the new poles. This paper proposes that in doing so, the
convergence characteristics with respect to the precision of the
solution will be improved.

III. FITTING OF MODAL PROPAGATION FUNCTIONS

A. VF and WVF approach to fitting modal propagation func-
tions

For VF (and WVF), it is essential to select a good estimate
for the modal time delay (τm) prior to attempting to fit the
respective function. The delay must be removed from Hm of
(5), and then the fitter can be run on H ′m. Fig. 1 shows an
overview of this algorithm.

Without an appropriate choice of τm, the fit will not be
successful, as illustrated by Fig. 2.

Figure 1: Algorithm for fitting H ′m using VF or WVF
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Figure 2: Typical example of VF maxerr with respect to choice
of time delay, τm

In EMT-type program applications the time delay is pro-
cessed in order to minimize the fitting error using Brent’s
method for root-finding. This involves first estimating the
time delay, then applying iterative modification of the time
delay in successively smaller intervals, adding the delay to
the modal propagation function, performing VF/WVF, and
then subtracting the delay before testing for convergence. In
this study the delay is not removed and replaced, rather the
magnitude is tested as an overall measure of fitness, to isolate
the variations between the fitters without having to consider
the delays.

B. magVF and WmagVF approach to fitting modal propaga-
tion functions

The magVF (and WmagVF) approach exploits the assump-
tion that the propagation functions are minimum-phase to allow
the fitting to proceed without prior time delay estimation. The
magVF algorithm yields magnitude-squared poles and zeros
which are symmetric with respect to the imaginary axis in the
Laplace domain, as per (25).

To get the magnitude and phase response of a minimum-
phase function from the magnitude-squared response after



fitting with magVF, two approaches can be taken.
One way to get the magnitude approximation from the

magnitude-squared approximation, is to take the square-root
at each frequency point, as in√

|Hm(ωk)|2 = |Hm(ωk)| . (35)

Using the fact that minimum-phase systems have a direct
relationship between their magnitude and phase responses, it
is possible to derive the phase response from this result [8],
[9].

Alternatively, convert (27) into an equivalent poles-zeros-
gain form and then select only the LHP poles and zeros.
This is equivalent to going from (25) to (26). The DC gain,
F0 from (26), is determined by taking the ratio between the
given response and the approximated one at any frequency
point where the given response has appropriate magnitude.
For this study, the magnitude responses were greatest at low
frequencies, and so these values were employed for recovering
F0.

Once the phase of the minimum-phase function H ′m has been
determined, letting ]H ′m refer to the phase of the minimum-
phase system that has been derived using magVF, and ]Hm
be the phase of the given modal domain function, then it is
possible to employ the ULM theory from (5), such that

]Hm = ]H ′m−ωτm, (36)

τm =
]H ′m−]Hm

ω
. (37)

Given that τm is theoretically constant, it can be solved as
an overdetermined least squares problem using all or a select
number of frequency points.

Two further modifications were made to the standard
magVF, in addition to weighting and are listed below. These
could be made internal to the magVF algorithm, so that
they are applied automatically as needed, without additional
external logic required, but for testing, they were exposed to
determine their individual effects on the figures of merit.

1) Disciplined Convex Programming (DCP) to ensure non-
negative definite magnitude-squared function: When using
(27), magVF will occasionally return negative values for
the magnitude-squared approximation at certain frequencies,
particularly those where the magnitude has dropped very close
to zero. Obviously, negative values are non-plausible for a
magnitude-squared response. In [3] a convex optimization
technique has been proposed to counter them. Similarly, Dis-
ciplined Convex Programming (DCP) methods [10] using the
CVX software package [11] for MATLAB have also been
implemented in this study to help to provide an optimized
solution to the residues identification, where necessary.

2) A pole modification scheme based on smooth magnitude
response: Since the modal propagation functions for trans-
mission lines and cables have generally smooth magnitude
responses, [12] suggests it is best to use real and logarith-
mically spaced values for their starting poles. In this vein, a
new pole modification scheme is tested, such that at the start of
each iteration, the incoming poles are modified by taking their

negative absolute values. This way, all the injected poles for the
subsequent iteration will be real and stable, lending themselves
well to approximating smooth magnitude responses.

C. Case study: 6 conductor underground cable

Results from a 3 cable 6 conductor case study are presented.
The specifications for this cable are shown in Fig. 3 and further
details can be found in [13] (case CAB01).

Figure 3: Configuration of underground power cables studied

Two types of tests were conducted.
1) The first involves fixing an arbitrary order, and trying to

fit each modal propagation function with magVF, using
different strategies (DCP optimization, weighting, pole
modifications) to see the effects on convergence.

2) The second test involves a comparison of the various
fitters (VF/WVF/magVF/WmagVF, with and without
pole modification) to determine the lowest number of
poles required to arrive at a successful fit within a defined
error limit.

The figures of merit used to test the error of the magnitude fit
are:

εabs(k) =
∣∣∣|F(sk)|−

∣∣∣F̃(sk)
∣∣∣∣∣∣ , (38)

maxerr = max{εabs(k)} . (39)

1) Fitting using magVF with arbitrary order to see effect of
incremental modifications: The algorithm used for determining
the effect that the various modifications to magVF had on the
final results is shown in Fig. 4. Table I gives results for the
maxerr observed using this procedure.

Each modal propagation function was fitted with 12 poles,
initially all real and distributed logarithmically. A maxerr of
0.0250 was defined as the threshold for successful conver-
gence. A maximum of 300 iterations was allowed.

Examining Table I, it can be seen that modal propagation
functions 2 and 3 failed to meet the desired target for maximum
error using the default configuration. Functions 1 and 2 failed
to meet the non-negative definite criteria, and needed the DCP
constraints. After applying the constrained fitter, function 1
achieved convergence.

Next, weighting was applied to all modal domain func-
tions. Although function 3 made a significant improvement
with the application of weighting, it still remained above the
desired threshold of 0.0250. Function 2 was reduced to 0.0239,



Figure 4: Testing algorithm used to determine effect of magVF
modifications with fixed order

Table I: Resulting maxerr between given and fitted modal
frequency response using magVF as per algorithm described
in Fig. 4. Desired maxerr < 0.0250.

Modal Default Needs DCP Weighted Pole mod.
function maxerr DCP? maxerr maxerr maxerr

1 0.0166 Yes 0.0016 0.0016 0.0016
2 0.0272 Yes 0.0269 0.0239 0.0210
3 0.0918 No 0.0918 0.0459 0.0212
4 0.0052 No 0.0052 0.0052 0.0052
5 0.0052 No 0.0052 0.0052 0.0052
6 0.0052 No 0.0052 0.0052 0.0052

and thus achieved convergence thanks to the application of
WmagVF. Since the other functions which converged had done
so after the first iteration, weighting had no effect on them.

Finally, applying the pole modification scheme was required
in addition to weighting to fit the remaining two functions.
Function 2 converged after three iterations, while function
3 required 175 iterations before converging using this pole
modification technique.

The resulting magnitude and phase plots are given in Fig.
5.

2) Minimum order required to achieve convergence using
VF/WVF/magVF/WmagVF and pole modification: Another set
of tests was run to see how the fitters performed with respect
to minimizing the order required to arrive at a solution within
a desired error. The algorithm for this is presented in Fig. 6.

The limit for the approximation order was defined as one-
half of the total number of frequency samples available (K =
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Figure 5: Magnitude and phase plots of all 6 modal propagation
functions using 12 poles to fit (Norder = 12). Given modal
data is superimposed with WmagVF approximation (see Table
I for errors)

Figure 6: Algorithm for testing minimum order required to
converge within desired error

80), such that

Nordermax <
K
2
= 40 poles. (40)

The results are summarized in Fig. 7a for VF and WVF,
and Fig. 7b for magVF and WmagVF. It can be seen that
in all but one case (WVF with pole modification, mode 2),
the fitters were successful in finding solutions that converged
within the desired maximum error limits (maxerr < 0.0250).
Furthermore, the number of poles required by weighted fitting
was consistently less than by non-weighted fitting.

3) Discussion:
a) Benefits of using weighting: It is evident that weight-

ing showed an improvement with both fitting algorithms. This
is especially true for troublesome functions – numbers 2 and
3 in this study. From both tests conducted, and with both
families of fitters, weighting was able to demonstrate improved
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Figure 7: Minimum order required for convergence with
maxerr < 0.0250. Lower values are better.

performance.
b) Benefits of using pole modification for smooth re-

sponse: A pole modification scheme of fitting based on smooth
responses using real input poles was demonstrated in this
paper. It proved to be beneficial in nearly all cases. It was
required for modal function 3 when the order was fixed at 12
poles.

However, when employed with WVF there was one case
(function 2) where this modification did not manage to provide
a suitable solution. When, and how, this pole modification
scheme is employed – which is effectively a perturbation of the
fitter between iterations – should be examined in further detail
to develop best practices accounting for the internal mechanics
of the fitter and type of responses being fit.

c) Observation that W/VF does not guarantee minimum-
phase systems: Taking the zeros of the approximated transfer
functions provided by the VF or WVF algorithms it was
observed that for many of the cases there were zeros in
the right-hand s-plane. This implies that the modal approx-
imations being returned by VF or WVF were often non-
minimum phase, or mixed phase systems. The magVF and
WmagVF algorithms, on the other hand, guarantee minimum-
phase systems with zeros that are strictly in the left-hand s-
plane. More research is needed to see the effect of pole-zero
cancellation, and to study the implications of using mixed-
phase approximations with the ULM.

d) Observation that magVF converges quickly: It was
observed that during the second set of tests, as presented in
Section III-C2, the magVF algorithm converged very quickly,
often in the first iteration. As mentioned previously, this

implies that weighting is often unnecessary, since it has no
effect until the second iteration. Furthermore, it suggests that
magVF is much quicker than the current VF/WVF method
which requires an iterative approach to find a suitable value
for time delay τm. Although, with magVF, certain modal
propagation functions may require optimization of the residues
to ensure non-negative definite values, this procedure is not
more stringent than the iterative estimation of the time delays
used in VF.

IV. CONCLUSION

In conclusion, this paper elaborates on the theory required
for – and provides a successful demonstration of – an imple-
mentation of the magVF method for the identification of power
system transfer functions. Additionally, this study provides
the derivation of WmagVF, a new variation that employs
iterative weighting, analogous to the WVF method. Selective
modifications are also exploited as required to improve the
convergence of the fit of the magnitudes for troublesome
functions. It is observed that magVF can converge quicker
than VF in certain cases, that magVF can implicitly guarantee
minimum-phase approximations while VF cannot, that delay
determination is trivial in magVF compared to VF, and that
pole modification schemes and weighting can have a beneficial
impact on the convergence and order of the fit. These results
can be used to further improve the modelling and analysis of
transmission lines and cables.
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