Abstract—In this paper, a numerical procedure for computing electric and magnetic fields in a three-dimensional space using the constrained interpolation profile (CIP) method is presented. Then, this method is applied to computing electric and magnetic fields, which are generated by a current wave propagating upward along a vertical lightning return-stroke channel. The lightning return-stroke channel is modeled by a phased-current-source array. The spatial and temporal distribution of the lightning return-stroke channel or phase-current-source array is represented by a new simple mathematical function of height, time and channel-based current.

Keywords: Constrained interpolation profile method, electromagnetic field, finite-difference time-domain method, lightning channel model.

I. INTRODUCTION

Recentley, electromagnetic computation methods have been used frequently in analyzing lightning electromagnetic pulses and surges [1]. Among electromagnetic computation methods, the finite-difference time-domain (FDTD) method [2] and the method of moments (MoM) [3] have been most frequently used. Therefore, their fundamental theories, advantages and disadvantages are familiar to researchers related. On the other hand, methods other than these two are little known.

In this paper, a numerical procedure for computing electromagnetic fields in a three-dimensional (3D) space using the constrained interpolation profile (CIP) method [4] is presented. Although the CIP method has been employed in numerical computations in Hydromechanics, it is a sort of new methods in lightning electromagnetic-pulse and surge computations. Then, this method is applied to computing electromagnetic fields, which are generated by a current wave propagating upward along a vertical lightning return-stroke channel located on flat perfectly conducting ground, and the CIP-computed waveforms are compared with the corresponding waveforms computed using the FDTD method. The lightning return-stroke channel is modeled by a phased-current-source array. The spatial and temporal distribution of the lightning channel is represented by a new simple mathematical function of height, time and channel-based current.

II. THE THEORY OF THE CIP METHOD

A. Fundamentals

The CIP method is one of the finite-difference methods, which was proposed by Yabe et al. [4]. The advection equation for one-dimensional spatial-variable function \(f(x,t) \) is given by

\[
\frac{df}{dt} + u \frac{df}{dx} = 0
\]

where \(u \) is the propagation velocity of a wave of interest.

As one of the schemes for numerically solving Eq. (1), the upwind finite-difference scheme is known. However, the use of this scheme causes numerical dispersion as shown in Fig. 1, when a relatively coarse grid is used. Differently from the upwind finite-difference method, the CIP method considers not only electric- and magnetic-field values on grid points but also their derivative values there. In principle, therefore, it can suppress numerical dispersions even when a relatively coarse grid is used.

The CIP method employs an additional advection equation for spatial derivative given below.

\[
\frac{dg}{dt} + u \frac{dg}{dx} = 0
\]

where \(g = \partial f / \partial x \).

The use of Eqs. (1) and (2) allows one to simulate the propagation of a wave with a less numerical dispersion as shown in Fig. 2. This method has been successfully used in numerical computations in Hydromechanics.

In the CIP method, the profile of function \(f \) of \(x \) between grid points \(i-1 \) and \(i \) is approximated by a cubic function given below.

\[
F_i(x,t) = a_i (x-x_i)^3 + b_i (x-x_i)^2 + c_i (x-x_i) + d_i
\]

(3)

Coefficients, \(a_i, b_i, c_i \), and \(d_i \), are determined from values of \(f \), which are \(f_{i-1} \) and \(f_i \) at grid points \(i-1 \) and \(i \), respectively, and values of spatial derivative of \(f \), which are \(g_{i-1} = \partial f_{i-1} / \partial x \) and \(g_i = \partial f_i / \partial x \), at the same grid points. They are given as follows.

\[
a_i = \frac{g_i + g_{i+1}}{(-\Delta x)^3} + \frac{2(f_i - f_{i+1})}{(-\Delta x)^2}
\]

(4)

\[
b_i = \frac{3(f_{i-1} - f_i)}{(-\Delta x)^2} - 2g_i + g_{i-1}
\]

(5)

\[
c_i = g_i
\]

(6)

\[
d_i = f_i
\]

(7)

By computing time-update equations (8) and (9), coefficients of which are given by Eqs. (4) to (7), \(f_i^{n+1} \) and \(g_i^{n+1} \) at the next step \(n + 1 \) are obtained.
where ξ is $-u\Delta t$.

Note that the above-explained procedure is for a wave propagating at a constant speed of u in the positive direction of x. For simulating a wave propagating in the negative direction, Eqs. (10) and (11) need to be employed instead of Eqs. (4) and (5).

$$a_i = g_i + g_{i+1} + \frac{2(f_i - f_{i+1})}{\Delta x^2} \quad \text{(10)}$$
$$b_i = \frac{3(f_i - f_{i+1})}{\Delta x^2} - \frac{2g_i + g_{i+1}}{\Delta x} \quad \text{(11)}$$

B. Application to EM-field computation [5][6]

Faraday’s and Ampere’s laws are given by

$$\nabla \times E = -\mu \frac{\partial H}{\partial t} \quad \text{(12)}$$
$$\nabla \times H = \varepsilon \frac{\partial E}{\partial t} + J \quad \text{(13)}$$

where E is the electric field, H is the magnetic field, J is the conduction-current density, μ is permeability, and ε is permittivity.

When the medium of interest is non-conducting ($J = 0$), Eqs. (12) and (13) are expressed as

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} + B \frac{\partial W}{\partial y} + C \frac{\partial W}{\partial z} = 0 \quad \text{(14)}$$

where $W = (E_x, E_y, E_z, \xi H_z, \xi H_y, \xi H_x)^T$, $\xi = (\mu \varepsilon)^{1/2}$. When the propagation velocity of an electromagnetic wave is equal to $c = (\mu \varepsilon)^{1/2}$, coefficients, A, B, and C are given by

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -c & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -c & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -c & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ c & 0 & 0 & 0 & 0 & 0 \\ 0 & c & 0 & 0 & 0 & 0 \end{bmatrix}$$

Although Eq. (14) seems to be somewhat unfamiliar, its first element is

$$\frac{\partial E_x}{\partial t} + (-c) \left(\frac{\mu}{\varepsilon} \right) \frac{\partial H_x}{\partial y} + c \left(\frac{\mu}{\varepsilon} \right) \frac{\partial H_y}{\partial z} = 0$$

Therefore, it reduces to

$$\frac{\partial H_x}{\partial y} = \frac{\partial E_y}{\partial t} \quad \text{(15)}$$

This apparently shows x-component of Eq. (12), Faraday’s law.

Eq. (14) is separated into x, y, and z-directions, as given in Eqs. (15), (16), and (17), so that Eqs. (8) and (9) could be applied to.

$$\frac{\partial W}{\partial t} + A \frac{\partial W}{\partial x} = 0 \quad \text{(15)}$$
$$\frac{\partial W}{\partial t} + B \frac{\partial W}{\partial y} = 0 \quad \text{(16)}$$
$$\frac{\partial W}{\partial t} + C \frac{\partial W}{\partial z} = 0 \quad \text{(17)}$$

where W^n indicates W at time step n, W' indicates W after the calculation of Eq. (15), W^{**} indicates W after the calculation of Eq. (16), and W^{***} indicates W after the calculation of Eq. (17).

When a current source J is present, Eq. (18) needs to be added to the above procedure.

$$E^{n+1} = E^{n+1} - \Delta t \frac{\varepsilon}{c} (W^{**} - W^{n+1}) \quad \text{(18)}$$

From procedures given from (15) to (18), W^{n+1} is computed from its previous values W^n.

From Eq. (15), electric- and magnetic-field components, which propagate in the direction of x, are expressed as follows.

$$\frac{\partial E_x}{\partial t} - c \frac{\partial H_y}{\partial x} = 0 \quad \text{(19)}$$
$$\frac{\partial E_y}{\partial t} - c \frac{\partial H_z}{\partial x} = 0 \quad \text{(20)}$$
$$\frac{\partial E_z}{\partial t} - c \frac{\partial H_x}{\partial x} = 0 \quad \text{(21)}$$

When Eq. (19) is added to and subtracted from Eq. (20), and Eq. (21) is added to and subtracted from Eq. (22), the following equations are obtained.

$$\frac{\partial (E_x \pm \xi H_z)}{\partial t} \pm \frac{c}{\varepsilon} \frac{\partial (E_x \pm \xi H_z)}{\partial x} = 0 \quad \text{(23)}$$
$$\frac{\partial (E_y \pm \xi H_y)}{\partial t} \pm \frac{c}{\varepsilon} \frac{\partial (E_y \pm \xi H_y)}{\partial x} = 0 \quad \text{(24)}$$

Similarly, the corresponding equations for their spatial derivatives are obtained as follows.

$$\frac{\partial \xi E_x \pm \xi \xi H_z}{\partial t} \pm c \frac{\partial \xi E_x \pm \xi \xi H_z}{\partial x} = 0 \quad \text{(25)}$$
$$\frac{\partial \xi E_y \pm \xi \xi H_y}{\partial t} \pm c \frac{\partial \xi E_y \pm \xi \xi H_y}{\partial x} = 0 \quad \text{(26)}$$

where $\partial_t = \partial / \partial t$.

Eqs. (23), (24), (25), and (26) are pure advection equation for $(E_x \pm \xi H_z)$, $(E_y \pm \xi H_y)$, $(\partial_t E_x \pm \xi \xi H_z)$ and $(\partial_t E_y \pm \xi \xi H_y)$, respectively. Therefore, their propagations in the direction of x can be solved by applying the CIP method to these equations.

In the same manner as the above, from Eq. (16), pure
advection equations in the direction of y for $(E_y \pm \zeta H_z)$, $(E_z \pm \zeta H_y)$, $(\partial E_y \pm \zeta \partial H_z)$ and $(\partial E_z \pm \zeta \partial H_y)$ are obtained, and from Eq. (17), pure advection equations in the direction of z for $(E_x \pm \zeta H_z)$, $(E_y \pm \zeta H_x)$, $(\partial E_x \pm \zeta \partial H_z)$ and $(\partial E_y \pm \zeta \partial H_x)$ are obtained.

Note that, since the above-explained procedures yield spatial derivatives in their propagation direction only, spatial derivatives in directions perpendicular to their propagation direction are computed using the upwind finite-difference scheme.

The flowchart for calculating electric and magnetic fields and their spatial derivatives using the CIP method is shown in Table I.

<table>
<thead>
<tr>
<th>Step</th>
<th>Physical quantities to be calculated</th>
<th>Equation used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$E_x, E_y, H_z, H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>Eq. (15) : CIP method</td>
</tr>
<tr>
<td>1'</td>
<td>$\partial H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>1st-order upwind scheme</td>
</tr>
<tr>
<td>2</td>
<td>$E_x, E_y, H_z, H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>Eq. (16) : CIP method</td>
</tr>
<tr>
<td>2'</td>
<td>$\partial H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>1st-order upwind scheme</td>
</tr>
<tr>
<td>3</td>
<td>$E_x, E_y, H_z, H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>Eq. (17) : CIP method</td>
</tr>
<tr>
<td>3'</td>
<td>$\partial H_z, \partial E_x, \partial E_y, \partial H_z, \partial H_z$</td>
<td>1st-order upwind scheme</td>
</tr>
</tbody>
</table>

III. LEMP Computations Using Different Engineering Lightning Return-Stroke Models

A. Expression of representative engineering models

Fundamental engineering models of lightning return stroke is expressed by the following equation:

$$ I(z', t) = u(t-z'/v) P(z', t) I(0, t-z'/v) \quad \text{(27)} $$

where $I(z', t)$ is the channel current at an arbitrat hight z' and arbitrary time t, $I(0, t)$ is the channel-base current; $u(t)$ is the Heaviside function; $P(z', t)$ is the heigh- and time-dependent coefficient; v is the return-stroke speed; v is the current-wave propagation speed.

Table II summarizes $P(z', t)$ and v for representative engineering models: the TL model [7], the modified TL model with exponential current decay (MTLE) [8], and the TCS [9] models. Fig. 3 shows conceptual pictures of TL and TCS models.

B. Proposed engineering model

A new engineering model of the lightning return stroke is given as follows:

$$ I(z', t) = u(t-z'/v_1) P(0, t) \left[1 - \exp \left(\frac{1-z/v_1}{\lambda_p} \right) \right] \exp \left(\frac{-z}{\lambda_p} \right) $$

where v_1 is the initial or peak speed; λ_p is the peak attenuation coefficient; $P(0, t)$ is the return-stroke pulse.

This model considers both attenuation and dispersion of a lightning return-stroke current wave with its upward propagation along the channel. Fig. 4 shows waveforms of the channel current at different heights calculated using the proposed model for $\tau = 3 \mu s$, $\lambda_p = 1000$ m, $z = 1000$ m and $\lambda_p = 1000$ m. Fig. 4 also shows current waveforms calculated using the TL model for reference.

C. Typical features of LEMP waveforms

The following five features have been identified from lightning electromagnetic field waveforms observed at various distances from lightning return strokes [10][11]:

- (a) characteristic flattening in about 15 μs of vertical electric fields at tens to hundreds of meters [11];
- (b) sharp initial peak in both electric and magnetic fields;
- (c) slow ramp following the initial peak for electric fields measured within few tens kilometers;
- (d) hump following the initial peak in magnetic fields within several tens kilometers;
- (e) zero crossing within tens of microseconds of the initial peak in both electric and magnetic fields at 50 to 200 km.

These features are illustrated in Fig. 5. They have been used as a benchmark for the validation of return stroke models [12][13].
D. Computed LEMP waveforms

In this section, vertical electric field E_z and azimuthal magnetic field $H_φ$ generated by a current wave propagating along a vertical channel located on flat perfectly conducting ground, are computed using the CIP and FDTD method for TL, TCS, MTLE and proposed models.

In the FDTD simulation, a current source is represented by specifying its nearest circulating four magnetic fields as shown in Fig. 6 (a). In the CIP simulation, a current source is represented by specifying its first and second nearest twelve magnetic fields as shown in Fig. 6 (b).

The peak of the channel-base current is set to 13 kA, and its risetime is set to 1 μs. The return-stroke wavefront speed is set to 130 m/μs. Fig. 4 shows waveforms of current at heights 0 m, 1 km, 2 km and 4 km along the simulated lightning channel specified by TL and the proposed models. Table III shows conditions for computing (i) E_z at distance 100 m from the lightning channel, (ii) E_z at 3 km, (iii) E_z at 100 km, and (iv) $H_φ$ at 3 km.

Fig. 7 shows CIP- and FDTD-computed waveforms of E_z at horizontal distance 100 m, 3 km and 100 km and $H_φ$ at horizontal distance 3 km for the TL model. Figs. 8, 9 and 10 show those computed for TCS, MTLE and proposed models, respectively.

CIP-computed electromagnetic-field waveforms do not include non-physical-based oscillations, while FDTD-computed waveforms do. Particularly FDTD-computed waveforms for the TCS model include oscillations since the model involves a step-like rise at the wavefront. Even in the case like this, the CIP computation is stable.

Further, CIP-computed electromagnetic-field waveforms reproduce all the features of measured typical lightning electromagnetic-field waveforms, while the TL model cannot reproduce features (a), (c) and (e), the MTLE model cannot reproduce features (a) and (d), and the TCS model cannot reproduce feature (a). The latter conclusion agrees with that found in [12][13].

IV. CONCLUSIONS

The CIP method has been applied to computing LEMPs with representative engineering models of the lightning return stroke and a new model, and the CIP-computed LEMP waveforms have been compared with the corresponding FDTD-computed waveforms. It turns out that the CIP method is more stable than the FDTD method, and it yields more accurate results. Further, it is shown that LEMP waveforms at different distances from a lightning return-stroke channel, computed using the CIP method for the proposed lightning return-stroke model, agree reasonably well with the corresponding measured LEMP waveforms.

V. REFERENCES

Fig. 7. E_z and H_ϕ at various distances computed for the TL model.

Fig. 8. E_z and H_ϕ at various distances computed for the TCS model.

Fig. 9. E_z and H_ϕ at various distances computed for the MTLE model.

Fig. 10. E_z and H_ϕ at various distances computed for the proposed model.

