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Abstract-- This paper presents the theory and methods used
create a tool for the steady-state and time-domaimodeling of the
inductive and capacitive coupling between multipleneighbouring
electrically conductive structures. Several differat types of
overhead or underground structures can be modelecush as lines,
cables, telecommunication lines, pipelines, metatlfences or other
generic structures. First each structure’s impedane and
admittance matrices are computed using their geometal and
electrical characteristics. Then system matrices ar assembled
which include the mutual influence coefficients beteen each
conductor of each structure. A robust modal decompsition
algorithm is implemented that will handle all caseseven when
repeated eigenvalues are found, so that a pi-exa@presentation
of the coupled system can be created. The modeldsmpiled as a
COM library so that it can be used with a commercidsimulation
software.

Keywords : EMTP, Coupling, Electromagnetic Compatibility,
Induction, Transformation Matrix, Modal Decoupling.

I. INTRODUCTION

Nowadays power structures are omnipresent in
landscape, snaking their way across long distamesause of
the strong AC currents going through the condugcttirese
structures can generate electro-magnetic fields Hase the
potential to influence neighbouring parallel rurgisonductive
structures. Modeling and analyzing this coupling visry
important. It can pose serious security risks,dgample due
to the voltage induced on a metallic fence. Inducede on a
telecommunications line can also cause serioushiéty
issues.

While there exist a few specialized software thatlel the
coupling between power structures and
installations, most are either dating or are spetif a certain
type of installation. The problem with older softeas they
often lack flexibility and are not supported anymoor lack
precision due to the limited computing power av@#awhen
first developed. More specialized software will beeat at
doing one thing, such as computing the noise levkiced on
a telecommunications line by a power line, but do offer
any other modeling capability.

We therefore created a tool to model the couplietyvben
several different types of electrically conductis&uctures
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such as overhead power lines, underground cables,
telecommunication cables, pipelines or other genertallic
structures. Furthermore, this model can also bed use
accurately model the electrical characteristics aoflone
structure if so desired. First we compute eachcgira’s
impedance and admittance matrices using their geimale
and electrical characteristics. Then we assemblgesy
matrices which include the mutual influence codéffits
between each conductor of each structure. The modael
output the R, L, G and C system matrices for adstssate
analysis, or create an exact-pi representatiorhefcoupled
system for a time-domain simulation.

We elected to implement the model in the Matlab
environment, allowing us to make full usage of thisverful
tool's built-in toolboxes and matrix manipulationnttions.
Furthermore, since this model is to be integrated ai
simulation software such as EMTPWorks, we compiiee

del as a Microsoft Component Object Model, esalynta
registered DLL object which can be accessed frorg an
executable program. We can therefore use the Jipasc
engine provided in EMTPWorks to call the objecthwaur
data, perform the model computation and load tiselrento
circuit elements.

IMPLEMENTATION

The modeled structures can be of different natsmeh as
overhead transmission lines, aboveground or undengr

INPUT DATA

neighbouriﬁ&bles’ pipelines, telecommunication lines or cabeetallic

fences or of some other generic nature, and eathnctude
one or more conductors. Power structures can ledddieither
as disruptive or disrupted, depending on whethesy th
influence, or are influenced by, other structur&ther types
such as telecommunication lines, pipelines, fenees,. can
only be labeled as disrupted. We created input $dion each
of these structures in the EMTPWorks environmethi,ough
which the user specifies its electrical and geoicetr
parameters. For a generic structure, the user spestify
directly the per-unit-length R’, L', G’ and C’ mates as well
as its geographical location.

When computing the coupling between them, the model
assumes that all structures are parallel and ofainge length
in order to apply the transmission lines theory.ehsure this,
we use a so-called ‘decoupage’ algorithm that taseput
the geographical coordinates of all structures lwead and
creates groups of smaller, parallel subsegmentsl
subsegments from disrupted structures within tHeience
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area of a disruptive structure are converted tcsegiments conductor radius, jxthe horizontal separation between the
parallel to this structure to form groups, whichyn@ntain conductors and jdthe total distance between themis the
one or more disrupted or disruptive subsegments. insulation permeability ang the conductor resistivity.

The per unit length admittance matrix for overhéads is
assembled from the conductance G’ and capacitarice C
matrices. We can consider that the influence of shent
conductance G’ is negligible on lines, except atvlo
frequencies approaching DC where it is estimate®l 210"

1 S/m. The capacitance matrix is obtained from therise of
110 m | | the potential matrix P’, with the self and mutuagfficients of

° L ‘ e P’ computed using
80m 1 2h
P = InE4
Fig. 1. Coupled structures geographical layoutvwei from above) "2, . T (7)
i i ; pr= L p2i
Fig. 1 shows a power line L1 running close to a i 2, “(Tij (8)

telecommunications cable T1. Since the two strast@re not

> Whereg, is the permittivity of free space; dhe distance
exactly parallel to each other, they must be duitgo groups between two conductors and; BDhe distanc?a between one
with parallel subsegments as show in Fig. 2. Thearme !

: ) conductor and the image of the other in the ground.
distance between the two subsegments is kept.

B. Overhead / underground cables

f ’ The cables parameters of a coaxial arrangemertesineed
° T ® § as equations for coaxial loops, each loop beingéal with an
24 m inner conductor and outer conductor as return. ditermost
19m § § conductor uses the earth for return. Each loop temua
f § ~ therefore has the form
& L1 40m ‘ 40m ‘ Z'io0p = Z'inner + Z'insuation * Z outer 9)
AN Where the insulation impedance is given by
Group 1 Group 2 Z pssnion = iin (10)
. . . T oq
Fig. 2. Coupled structures parallel equivalentseasled into groups With r and q respectively the outer and inner iagah

radii.
o _ The internal impedance and the mutual impedance of
For each type of structure, we must determine @sumit typylar conductor are function of frequency duethte skin

IV. STRUCTUREMODELING

length impedance matrix effect, and are found with modified Bessel funcsi¢].
_ 2 =R jok _ 1) For above ground cables, the earth return impedasice
and per unit length admittance matrix computed the same way as for lines. When cables are
Y'=GHjwC (2)  underground, the mutual and self earth return iraped is
A. Overhead Lines computed using the notion of complex depth [4] with
2 "

The per unit length series impedance matrix Zbisried of Zpnua =%{Ko (md)+4+:12>(2 6’“”} (11)

the diagonal self impedance terms and the mutuefficients om? )
. . ' — —-2hm
between conductors. The self coefficient are glwgn Zearth ‘E{Ko(mR)" 2+miREC ’ } (12)
Z'i = Zntemal * Z carty (3) where ¢ is the vertical distance between conductor i and

where Ziyema is the surface impedance of the conduct@he jmage of conductor j in the air, and x the homtal
obtained from the skin effect formula and givenhwihodified gisiance between the conductors, & a modified Bessel

Bessel functions [1]. The earth return impedancd #%® f,nction to compute the skin effect, and m % @s defined
ground return mutual impedance are found using Dke-

previously

Dubanton [2][3] formulas : To use the equations in a form suitable for EMTRiets,

Z'eanh:jwui|n2(h+p) (4) we must transform the loop voltages and currenpltase

n ' ; quantities knowing that Mase = Vinner — Vouer and the phase
2, = jofin (hi+hj+2p) +%§ (5) current hhase is the sum of all the conductor currents of the

bTen d phase.
Where C. Pipelines

F’:,ﬁ (6) The per-unit-length impedance of a pipeline can be

r thghodeled as the sum of the ground resistangg &id the tube

and h and h are the height of conductors i and j, ! >+ |
internal impedance #%; [5]. The self coefficients are given by :



_ KW

Roa="g"

(13)

Zip = £ (14)

current in the ground :

Where S, is the surface of the tube section where curgenti | he inductance is given as :

flowing. This section is computed using the tubsnuiter and
the complex depth of penetration of the currerthatubep.
is the resistivity of the tube material.

The mutual resistance is simply the ground resistass
computed in (13). The mutual inductance betweenttbes is
similar to the self inductance (imaginary part df4)),
replacing the tube radius with the distance betwibentwo
tube axes.

The per unit length admittance matrix for pipeliniss

== pgnd - ‘ﬁ‘
P WWO k heq\/i (20)
Loz Mol inl Zea |40 (1K) +K2 +j@rctan[—k ) (21)
21 feq 1+k

Where heq andrq are respectively the average conductor
height above ground and the mean radius of the beam
comprising all conductors.

The fence conductance is computed from the post
resistance R, and the ground resistancg,Rdue to their
burying.

1

R —
assembled from the conductance G’ and capacitarice C Ao (Riq *+Rona) (22)
matrices. Only for underground conductors, the self where ¢ is the distance between posts, and
conductance is computed from the tube insulatia@istance R = Pea,
K pig T 'g g (23)
per unit length piq
,_
G"_R‘S‘" (15) Ryng =20 | 2o |3 24
where d is the tube diameter ands,Rthe insulation " 2mDy, S (24)

resistance per unit surface. There is no conduetaioc
overhead conductors.
In the case of an underground pipe, the imaginary f

piq piq
Tt

Ohiq IS the posts resistivityg,q their sectionhyq their height
above groundDy, represents the depth at which the posts are

the total admittance is computed using the tubef sburied.

capacitance, which is a cylindrical capacitor. 8itiwere is no
mutual capacitance, therefore no off-diagonal eteméehe

capacitance matrix can be computed directly using
d
i =% (16)
Whered; is the insulation thickness amglande, are the air
and insulation permittivity.
For overhead pipes. since there will be mutual citgace
between the conductors, it is necessary to compiiée

potential coefficients. The self and mutual coédints are

computed using
In[h‘ +4/h? +a2]

a (17)
Pl = 2%,
In 5
pr = [du‘ ] (18)
Uoomege,

Where a is the tube radius.
Finally the capacitance matrix is computed as tlerse of
the potential matrix.

D. Fence structures
The per unit length impedance matrix of a metd#iace is
computed from its linear resistance and inductamedrices
[6]. The linear resistance R’ is computed using
Puwire
S N (19)

wire' “wire

R'=

Wherepyire is the wire resistivity, . the wire section and

Nuwire the number of wires constituting the fence.

The fence linear capacitance is given by :

cr=_ 2%

|n2hJ

Spia
Tt

V. SYSTEM MATRICES

(25)

Using modeling techniques consequent with its eatue
compute each structure’s per-unit-length phase dapee and
admittance matrices independently of other strestuWe then
assemble coupled system matrices and computertieuses’
mutual influence coefficients to obtain M-phase #timce
and impedance matrices, where M represents theofuime
conductor count from all structures.

An n-structure system per-unit-length admittancérimnaias
the form

(26)

With Y’; representing the™i structure self admittance
matrix, and Yj representing the mutual impedance
coefficients matrix between th® and |" structure conductors.

There is no mutual admittance between underground
structures, or between an underground and oversteacture.

In the case of overhead structures, there will betuai
capacitance between the conductors

Y 't = J0C e (27)

An n-structure system per-unit-length impedanceimbats

The linear inductance is computed using the complgXe form

images theory. Considering is the depth of penetration of



(28)

1 Zn
zo=| o
Z'y o 2y

2
d Iphase

dXz [zlphase Dlahase (32)
We can find voltage and current transformation esr

:Y‘

phase

With Z'; representing the™i structure self impedancesych that

matrix, and Z; representing the mutual impedance coefficients

matrix between thé"iand |" structure conductors.

In the case of underground structures, there isuahut

inductance between the conductors. The mutual tadae
coefficients between the conductors are computéul uhe

same equations and methods as in the case of qjaraﬁ

underground cables, as shown in (11).

If shielded structures are involved, the valuehasf mutual
inductance applies to the structure outer conductor

For overhead structures, there is mutual inductheteeen
the conductors. The mutual inductance coefficidoeveen
the conductors are computed using the same eqgsatind
methods as in the case of parallel overhead lwasre the
value of the mutual impedance between two condscisr
computed as shown in (5)

In the case where overhead shielded structureisneskved
(such as telecommunication cables), the value efntlutual
inductance applies to the structure outer conductor

In the case of mixed overhead / underground strestu
there is mutual inductance between the conductssuming
the {" conductor is in the air and th& bne in the earth,
consider the action of th& gircuit on the ' one to compute
the mutual impedance. The mutual impedance coeffisiare
computed using the Lucca [7] approximation of theact
integral :

. Mof,d 2y |y?-3a?
w30 9
with the earth conductivity; _1 and the horizontal

P
distance between the conductors denoted as a.

ke = _j(*)uoo-e and Y= jke

_ 2
y=hi—h+=

Y
=72 +a?

VI. TRANSFORMATIONMATRIX
To facilitate the solution of the M-phase systenuped

V,

711
mode_Tv aY

phase
Imode = Ti71 D}Jhase

The frequency-dependent modal voltagg) (&nd current

(T) transformation matrices are respectively the molu
‘genvectors of the matrix producty’ [y’ and

(33)

phase phas

Y;;hase[zl phas”
The current transformation matrix is related to tiodtage

transformation matrix through :
T=[n]" (34)

It is therefore sufficient to calculate only one tife
transformation matrices. However, this bi-orthonality
cannot be satisfied [8] unless the voltage andectirmodal
transformation matrices themselves form an orthmabbasis.
This is true for the vast majority of cases enceted in the
power system studies where the per unit phase i and
impedance matrices are either Hermitian or norraLQ].
This type of matrix ensures that the eigenvalues dastinct
and their associated eigenvectors are unique amshrly
independent.

Problems arise when the matrix prod@g%asew' has

phas
repeated eigenvalues [11] There are cases when some
eigenvalues are repeated yet a linearly indepensinbfn
eigenvectors can be found. There are however ctsss with
repeated eigenvalues where the eigenvectors (cslwhii,
and T) corresponding to those repeated eigenvalues @re n
unique. The eigenvectors associated with a repeseedof
eigenvalues can be transformed with a nonsingular
transformation to another set which retains thelitabto
decouple the second-order equations. Structurdsettabit
certain types of symmetry (such as pipe type cilolas result

in repeated eigenvalues and hence give rise tonthisinique
assignment of the columns of, ®r T, associated with those
repeated eigenvalues. The nonunique assignmetihese
eigenvectors will not affect the diagonalizationtieé second-
order equations but will affect the diagonalizatwithe first

equations, they can be transformed into M decoupledder equations for giase@nd Y'nase FOr this type of structure

equations, which can then be solved as single-pisations.
Modal decomposition is the adopted theory to delmap
system. Starting from the voltage current relation

av,
phase _ '

T = _thase %hase

dlphase _ ' (30)
dx = _thase D/phas:e

By differentiating the first equation with respeot x and
replacing the current derivative with the secondatipn, a
second-order equation for voltage only is obtained

dzvphase
dx?

Similarly a second-order equation can be develdpethe

current :

:ZI

phase

D(;Ilhase wphase (31)

the eigenvector matrices, Tand T need to be evaluated
separately.

The eigenvalues and eigenvectors are evaluated tsn
Matlab commandeig. This function uses the well known
Lapack [12] routines to evaluate the eigenvaluesl an
eigenvectors. Theig function is very robust and provides the
correct solution [13] when a matrix has no repeated
eigenvalues. The eigenvectors themselves are always
independent and the eigenvector matrix V diagoaalithe
original matrix A if applied as a similarity tramsmation.
However, if a matrix has repeated eigenvalues itecessary
to find a full (independent) set of eigenvectors. the
eigenvectors are not independent then the origmatrix is



said to be defective. Even if a matrix is defectile solution tanh Lé]
2

from eig satisfies A*X = X*D. Imposing this condition imé 2Vt = Yonoge (39)

eig function results in incorrect selection of theegigectors h is th 2 i

associated with the repeated roots. Thus a mgerous whereyls the propagatzlsn constant. (40)
Y= mode

approach has to be investigated for the evaluatidn and T. ) ] -

The number of repeated eigenvalues (geometrical 10 OPtain an equivalent M-phase pi-circuit, the gtha
multiplicity) is determined and the largest possitset of quar?tlt|es are first transformed to qual quan_nm shoyvn
linearly independent eigenvectors is evaluatedousiie rref ~ Préviously. For each mode an equivalent singlephps
Matlab function. This function produces the reducesy Circuitis then found in the same way as for sifase lines.
echelon form of ZY (for J) and YZ (for T) using Gauss Thes_e single-phase modal pi-circuits each have _rmsse
Jordan elimination with partial pivoting [13]. A lesance admittance Yeies-moge@nd two equal shunt admittance
variable is included in the reduced row echelonmfor 1

computation that allows the exact number of eigetors to EYSh“m‘mOde' By assembling these admittances as diagonal

be found for each eigenvalue depending on how rtiam®s it matrices, the admittance matrices of the M-phaseirBuit in
is repeated, smoothing out oscillations when toayr@ two phase quantities are obtained from
few vectors are found for a particular eigenvalue. Yeures ereemode T
This algorithm works in all practical cases. Thayadraw 1 o
H H H 7Yshum = Tl D(shum—mode Erv
back is the eigenvector matrices dnd T must be evaluated 2
separately and the bi-orthonormality property carmoused ~ This representation can be loaded directly into
to avoid the matrix inversion of &nd T,. EMTPWorks devices, allowing us to perform time-déma
The modal impedances and admittances are spe(’;i’ﬁedsimu|ati0n8 to study the resulting waveforms onnadideled
conjunction with the eigenvectors used in theicettion. To structure conductors.

obtain them, transform equation (30) to modal qtiast:

dy, 1
-—fnode — Tvl z phase[:ri Mhnode (35)

dx Since this new tool can be used to perform indecénd

The tr_lple matrix product in  (35) IS d!agonal [,14]capacitive coupling computations for different tgpef
representing the elements of the modal series iempeed This structures, we used a variety of established sofsvésuch as

modal impedance becomes : EMTP software, electromagnetic compatibility toodd

=T, IV, ot
(41)

VIIl. V ALIDATION

Z'moae =Ty pnasel T (36) induced noise on telecommunication lines calcuitaio
Similarly, the modal shunt admittance matrix isegi\oy :  compare and validate the results. The validationcess
Ymoge =T " Y phase (T, (37)  showed very good concordance with the referencesalio
tested configurations. We also tested several cakese the
VII. PI-EXACT MODEL matrix productz, [y’ . has repeated eigenvalues in order

To use the model in an EMTP-type software for timedel o yalidate the robustness of the algorithm, whirclall cases
simulations, it is implemented in terms of Y-matrixyas able to find a linearly independent set of migetors.
representations of the series and shunt branchesa of The next step in the validation process is a coisparof
multiphase pi-circuit. the computed results with measurements taken infiéthe.

Y series Induced current and voltage measurements will kentaon a
number of structures adjacent to aerial or buriedgr lines,
which will then be compared to the computed values.

Va Yshunt Va Yshunt

IX. CONCLUSION

We demonstrated a tool used to accurately modettstes
of different nature and the coupling between th&ims tool
can output matrices representing the complete edugystem
— — to perform steady-state studies in a commercialulsition

Fig. 3. Coupled Circuit representation of a pi-axaodel software, or create a pi-exact representation ifoe-lomain
simulations. To obtain the necessary decoupledtimsa we

For each modg of a multiphase line, the equivalent-pimplemented an algorithm to compute the voltage @dent

representation as shown in fig is : transformation matrices that will work in all casesen with
v 2V sinh(y¢) (39) conflgurayons that e>_<h|b|t a certain type of .syrtr_me

SEMS ™ Z eries T Yoede Y resulting in repeated eigenvalues for the ZY matBix using

and the Matlab framework, we created a high-level cthkt is

easily expendable and modifiable, and when compésda
COM object can be called by any executable program.
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