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Object Oriented Design of a Transient
Analysis Program

Taku Noda

Abstract— This paper presents a design methodology of an
electromagnetic transient analysis program based on an object-
oriented approach. Two important features of the object oriented
programming are (i) abstraction of data and their procedures
using classes and (ii) derivation of a new class from an existing
class using the concept of inheritance. In the proposed design
methodology, first the base class, from which all kinds of circuit
components are derived using inheritance, is defined. When a
specific circuit component is derived from the base class, the
parameters, the internal variables, and the behavior of the
component are defined and described in the code defining the
derived class. This means that each circuit component manages
its data and knows how to initialize and update itself, that is, the
circuit solver does not have to manage and know them. In this
way, we can separately write the code of the circuit solver and
that of circuit components, and thus, coding is simplified and code
maintainability is enhanced. Especially, adding a new component
does not require modifications in the circuit solver code. Using
the proposed approach, a new transient analysis program named
“XTAP” (eXpandable Transient Analysis Program) has been
created. Some practical implementation issues are also presented
in the paper.

Index Terms— Circuit simulation, Electromagnetic transient
analysis, Object oriented programming, Power systems, and
Software maintenance.

I. I NTRODUCTION

POWER engineers have started using object-oriented meth-
ods for power system simulations in the late 80’s. Object-

oriented methods are now used in various aspects of power
system simulations [1]–[13]. In [1], an object-oriented im-
plementation of a load-flow program using the Objective-C
language is illustrated. How power system components such
as transmission lines, transformers, and etc. are modeled using
classes is shown, and it is concluded that the object-oriented
approach reduces the efforts of programming. Similar results
are obtained in [2]–[4] using the C++ language. In addition,
[2] shows how to handle sparse matrices using C++, and [4]
deals with large-scale networks including FACTS controllers.
Object-oriented modeling of a power system for dynamic
stability type simulations is proposed in [5], and for obtaining
the steady-state solution of a nonlinear power network in [6],
both using C++. An object-oriented modeling methodology,
called DCOM (Distribution Circuit Object Model), for a dis-
tribution analysis system is reported in [7]. As an application
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to other than programming, an object-oriented concept was
used to develop a common database which generates input
data files for different simulation programs ranging from load
flow to electromagnetic transients [8]. The database stores
parameters of power system components in various aspects and
appropriately processes the parameters to generate an input file
for a specific type of power system simulations. Reference
[9] reports a development of graphical user interfaces for
power system simulations using object-oriented programming.
The development of a fault locating system using an object-
oriented approach is described in [10].

Two important features of the object-oriented programming
are (i) abstraction of data and their procedures using “classes”
and (ii) derivation of a new class from an existing class using
the concept of “inheritance”. An efficient implementation of
an electromagnetic transient program is reported in [11] based
on a partly object-oriented approach using Fortran 95. The
approach only uses (i) for optimizing the execution speed.

This paper presents a design and programming methodology
of an electromagnetic transient analysis program based on a
fully object-oriented approach. The proposed object-oriented
methodology first defines a base class called “Branch”, from
which all kinds of circuit components are derived using
inheritance. The Branch class has data and their procedures
which are common to all circuit components but no specific
model parameters and behaviors are defined. Using inheri-
tance, specific model parameters and behaviors are added to
the Branch class, and as a result a specific circuit component
is derived. From the Branch class, not only simple compo-
nents like resistors, inductors, capacitors, and etc. but also
complex components are derived. In order to carry out an
electromagnetic transient simulation, each circuit component
has to be initialized preceding the time step loop and then
updated at each time step (if the component is nonlinear,
then updated at each iteration step). The proposed design
methodology significantly simplifies these processes. Since all
circuit components are derived from the common base class
Branch, all circuit components can be put into an array of
the Branch class. Once all components of a circuit are stored
in the array, the circuit solver can issue an initialization or
updating message to each element of the array. When issuing
these messages, the circuit solver does not have to specify
how to initialize or how to update and even does not have
to know what is each element in the array. On the other
hand, each element knows how to initialize or update itself,
since the initialization and updating processes are defined
when each component has been derived from the Branch
class. This enables separately writing the code of the circuit
solver and that of circuit components and thus significantly
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simplifies the entire code structure. Code maintainability is
also enhanced. Especially, adding a new component or a user-
defined component becomes an easy task. When adding a new
component, the circuit solver does not have to be revised and
only the code for deriving the new component from the Branch
class is required.

Using the proposed object-oriented design methodology, a
new transient analysis program named “XTAP” (eXpandable
Transient Analysis Program) has been created. The C++
language is used in the implementation, and some practical
implementation issues are also presented.

II. OBJECT-ORIENTED PROGRAMMING

Conventional procedural programming languages are used
to place commands which are successively executed to process
data. Thus, procedures (commands) are of main concern. On
the other hand, the object-oriented programming languages
consider that the target objects themselves are equally impor-
tant as well as their procedures. To use an existing object, we
do not have to know how the object works. We just send a
message to the object, and the object understands the message
and works. This situation is similar to that when you want to
watch television you only have to know how to use a remote
controller (how to send a message) and you don’t have to know
how the electronic circuits work inside the television set.

To realize this way of thinking in programming, the object-
oriented programming languages introduce the following con-
cepts:
• abstraction by class structuring
• message passing
• encapsulation
• derivation of a new class by inheritance

We use class structuring to define an object as a “class”. In
the class definition, not only the data structure of the object
but also procedures for the data, called “methods”, are defined.
The data structure and their procedures are now represented by
an abstract entity called a class. To use an object, an instance
is generated from the class definition of the object and actual
computer memory is allocated for the instance. A method of
the object is invoked by passing a message to the instance from
outside. The internal data of an instance are not accessible
from outside, and this structurally prevents from modifying
the internal data by mistake and is called encapsulation. In
order to define a new class which is a revised or expanded
version of an existing class, we use inheritance. Rather than
defining such a class from scratch, the revised or expanded
class is derived from the original class by adding the revised
or expanded portion of data and methods, and this is called
inheritance.

In the proposed design methodology, circuit components are
modeled using the object-oriented approach mentioned above.

III. D ESIGN

A. Overall View

Fig. 1 shows the overall view of the proposed transient
analysis program design. The circuit solver itself is an object,
and the design of the class defining the circuit solver is

described in Section III-D. The circuit components, including
not only simple ones like resistors, inductors, capacitors, and
sources but also complicated ones like transmission lines and
generators, are also considered to be objects. They are derived
from the common base class “Branch” as described in Sections
III-B and III-C. The circuit solver has an array of pointers to
the instances of the circuit components. The array is named
“pBranches”. Since all circuit components have been derived
from the common class Branch, they can be put into the single
array. Actually, pBranches is an array of pointers to Branch
instances.

B. Circuit Component Class

List 1 shows the C++ code defining the “Branch” class.
First comes the string “Name” which contains the name of
this circuit component. Next comes the integer “NumPhases”
indicating the number of phases, that is, the number of terminal
pairs attached to this component. “LhsNodes” and “RhsNodes”
are the indices respectively of the left-hand side and the right-
hand side nodes connected to this component. The Branch
class has some other miscellaneous variables in the part (A).
They are omitted here, since they are irrelevant to the main
features of Branch. The double-precision floating-number vari-
ables “vbr” and “i br” respectively contain the branch voltage
and the branch current of this component at the previous
calculation step. They are necessary for numerical integration
of dynamic elements such as inductors and capacitors. “gsub”
is the container of the equivalent conductance value of this
component, if exists. “ssub” is used to hold the value of a
current source if this component has such a current source. If
the component is a voltage source, the voltage value is held in
“s sub” instead. The matrix/vector versions of vbr, i br, g sub,
and ssub are defined in the part (B) for the multiphase case,
but they are omitted here. In this implementation, the template
class “matrix” has been prepared separately for representing
matrices and vectors and easily performing matrix algebra.
“NodeNames” is a vector of strings defined as a static variable.
According to C++ rules, the memory for NodeNames of all
instances are shared. This is used for keeping a record of
all node names connected to all circuit component instances.
“pBranches” is a vector of pointers to Branches. Since this is
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 Fig. 1. Overall view of the proposed transient analysis program design.
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defined as static, this is also shared by all instances and used
for keeping the addresses of all instances.

The next part is the definition of methods. The constructor
and the destructor are defined first. The “Initialize()” method
is invoked by the circuit solver before entering the time step
loop for the initialization of this component. The “Update()”
method is called at each calculation step in the time step loop
for updating the internal state of this component. If this is
a nonlinear component, Update() is called at each iteration
step for solving nonlinear circuit equations. Otherwise, at
each time step. At this stage, since no specific behavior of
this component can be defined, these methods are empty and
defined as virtual. By defining as virtual functions, they will
be overwritten when a class for a specific circuit component
is derived from this class by inheritance, and overwriting
methods will properly be called at run time. The part (C)
includes miscellaneous methods common to all kinds of circuit
components, but not shown here.

It should be noted that in the definition of this base class
Branch only variables and methods which are common to
all kinds of circuit components are defined. At the time of
inheritance, variables used by a specific circuit component
will be added and the virtual functions will be overwritten
to implement specific component behavior.

List 1. Definition of the Branch class.

class Branch
{
protected: // ----------------------------------

string
Name; // name of this branch used as id.

int
NumPhases; // number of phases.

int
* LhsNodes, // left-hand side node indices.
* RhsNodes; // right-hand side node indices.

... (A) ...

double // for single-phase branches.
v_br, // branch voltage at the previous step.
i_br, // branch current at the previous step.
g_sub, // equivalent conductance.
s_sub; // current or voltage source value.

matrix<double> // for multiphase branches.
... (B) ...

static vector<string>
NodeNames; // contains all node names.

static vector<Branch * >
pBranches; // pointer to branches.

public: // -------------------------------------

Branch();

virtual ˜Branch() {}

virtual void Initialize() {}

virtual int Update( double, int ) {
return( 0 );
}

... (C) ...
};

C. Deriving a New Class for a Specific Circuit Component

In the proposed design, the circuit solver has no pre-defined
components. Even simple components like resistors are not
pre-defined. In this Section, how to derive a specific circuit
component from the base class Branch is illustrated using the
code for the linear inductor component as an example.

List 2 shows the code for the linear inductor component.
The code derives the class “Inductor” from Branch using
inheritance. It adds the double-precision variable “LVal” to
keep the inductance value. The constructor is overwritten to set
necessary information such as component category, number of
phases, instance name, and inductance value. The destructor is
overwritten simply by an empty method, since there is nothing
to do when the memory allocated to this object is released.
The “Initialize()” method is overwritten, and the equivalent
conductance value for a given inductance value and a given
time step interval is calculated and set to “gsub”, where the
code assumes the trapezoidal rule of integration [14]. In the
“Update()” method, the equivalent source value “ssub” is
updated based on the trapezoidal rule. The variable LVal that
is specific to this component has been added, and the methods
Initialize() and Update() have been overwritten to describe the
model specific behavior.

In the same way, other circuit components are defined. Fig. 2
shows the class hierarchy of the circuit components. All kinds
of components are derived directly from the base class Branch.
Multiple inheritance is possible to derive a circuit component,
but it is not recommended due to the overhead of execution
time especially in the case when the component is used many
places in a circuit. However, if the following three conditions
are satisfied, multiple inheritance may be used.

• The component to be developed is considerably compli-
cated.

List 2. Code for the linear inductor component.

class Inductor : public Branch
{
private: // ------------------------------------

double
L_Val; // Inductance value.

public: // -------------------------------------

Inductor( string Name1, double L_Val1 ) {
SetCategory( LinDyn ); // linear, dynamic comp.
SetNumPhases(1); // number of phases = 1.
SetName( Name1 ); // instance name.
L_Val = L_Val1; // inductance value.
}

˜Inductor() {}

void Initialize( double Delta_t ) {
g_sub = Delta_t/( 2.0 * L_Val );
}

int Update( double Time ) {
s_sub += 2.0 * g_sub * v_br;
return( 0 );
}

};
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 Fig. 2. Class hierarchy of the circuit components.

• The class of the component can be defined by adding
small amount of code to an existing component class.

• The component is used in one place or a few places in
the circuit to be simulated.

For instance, if the class definition of an elaborate synchronous
generator model is available and if you would like to slightly
change the excitation method, then deriving a new class for
the modified generator model from the existing synchronous
generator class could be preferable, rather than from the
Branch class. When this model is used in one place or in
just a few places in the circuit to be simulated, the overhead
of execution time can be small. Furthermore, if an error exists
in the original model and it is fixed, the same problem is
fixed at the same time also in the derived model. Thus, use
of multiple inheritance for deriving a new circuit component
should be decided with the considerations above.

D. Circuit Solver Class

List 3 shows the code defining the class of the circuit solver.
The class is named “SimuCase” which stands for a Simulation
Case. In the class definition, at first, the string “Name” is
defined to keep the name of a simulation case. The next section
of the definition consists of the containers of the network
information. The vector “NodeNames” of strings contains the
names of all nodes in the circuit. The array “pBranches” is
the same as the one used in the class Branch. The integer
variables “NumBranches” and “NumNodes” are the number
of branches (circuit components) and the number of nodes in
the circuit respectively. Next comes the section of network
matrices and vectors. “F” is the matrix obtained as a result of
linearization of circuit equations. The modified nodal analysis
[15] is used for the formulation of the circuit equations in
this implementation. The class “SparseMatrix” has separately
been prepared for efficiently storing the elements of a sparse
matrix in memory utilizing indexing and also for calculations
(see Section IV-A). The column vectors (n by 1 matrices)
“x” and “y” are the solution vector and the right-hand side
vector of the modified nodal equations respectively. Some
other miscellaneous member variables are defined in the part
(A).

The next section consists of member function definitions.
Only important methods are shown here, and the other meth-
ods are omitted in the part (B). After the definition of the

List 3. Code defining the class of the circuit solver.

class SimuCase
{
private: // ------------------------------------

string
Name; // name of this simulation case.

// Network Info.
vector<string>

NodeNames; // strings of all node names.
Branch **

pBranches; // array of pointers to Branches.
int

NumBranches, // number of branches.
NumNodes; // number of nodes.

// Network Matrices and Vectors.
SparseMatrix

F; // MNA matrix.
matrix<double>

x, // solution vector.
y; // RHS vector of the MN equations.

... (A) ...

public: // -------------------------------------

SimuCase( string, double, double, string );

˜SimuCase();

... (B) ...

void OutputRequest( ... ); // select outputs.

void Initialize(); // initialize all components.

int Start(); // start the time step loop.
};

constructor and the destructor, the method “OutputRequest()”
is defined. It assigns which simulation results are stored in the
output file. The method “Initialize()” first gets the address of
pBranches from the Branch class and then initializes all circuit
components, that is, the Initialize() methods of all Branch
instances are called, preceding the time step loop. It also
calculates the initial value of the matrix F. Finally, the method
“Start()” starts the time step loop of a transient simulation.
In the time step loop, the Update() methods of all circuit
components (Branch instances) are called to update their
internal states. The circuit equations are solved by the Newton-
Raphson iteration in this implementation. Linear components
are updated only once at each time step, while nonlinear
components are updated at each iteration step. This time
sequence showing how the methods of the SimuCase class
are called is illustrated in Fig. 3.

E. Overall Flow of a Simulation

Currently, the developed program XTAP reads input data
in the form of a text file. Simulation parameters such as time
step, maximum calculation time, and etc. are read first, and
then data of circuit components follow. Each time the data
of a component have been read, its instance is created from
the class of the component. After reading the data of all
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 Fig. 3. Time sequence showing how the methods of SimuCase are called.

components, the instance of SimuCase is generated and the
pointers pBranches to the circuit components are transferred
from Branch to the instance of SimuCase. Next, the section
specifying output variables is read from the input file, and the
instance of SimuCase gets the output specification using the
OutputRequest() method. The input file ends here. Then, the
instance of SimuCase performs the initialization process by
the Initialize() method and starts the transient simulation by
the Start() method as shown in Fig. 3.

IV. I MPLEMENTATION ISSUES

A. Handling of Sparse Matrices

In this implementation, a sparse equation solver called
PARDISO [16] is used to solve the system of circuit equations

Fx = y.

PARDISO, developed at the University of Basel, can be
used for solving a large sparse symmetric and unsymmetric
linear system of equations on shared-memory multiproces-
sors. Currently, XTAP is used on a computer with a single-
core processor, but tests on a multi-core (possibly 8 to 16
cores) shared-memory computer is scheduled in 2007. Since
PARDISO is written in FORTRAN, the following techniques
are important to efficiently pass the matrix F and the vectors
x, y from the main routine of XTAP to PARDISO. Passing
the vectors x and y is straightforward. The pointers to x and y
are passed to PARDISO. As mentioned above, F is stored in
the class SparseMatrix. It has, as its member variables, arrays
that store the elements of F using indexing and the pointers
to the arrays. The byte sequence (format) of the arrays is

designed so as to be exactly the same as that of PARDISO.
Thus, just by passing the pointers, the matrix F can be passed
to PARDISO. The memory allocated by SparseMatrix is not
copied and directly used by PARDISO.

B. Variable-Size Arrays

The Standard Template Libraries (STL) of C++ provides
useful data containers such as “vector”. A vector container
(not a mathematical vector) is a variable-size array of any type,
whose memory is linearly allocated. The memory allocation
for a vector container is dynamic and automatic, and the user
does not have to take care of it. Before reading an input file,
XTAP cannot know how many nodes and how many circuit
components exist in the circuit to be simulated. Thus, vector
containers are useful to store these data. However, if it is used
inside the time-step loop, the execution speed may be slowed
down depending on the implementation of the vector class of
a compiler used. To avoid this, only when reading an input
file, vector containers are used to store data. Then, before
entering the time-step loop, the pointers to the contents of the
vector containers are copied to ordinary arrays, and they are
used in the calculations inside the time-step loop. The array
“pBranches”, which contains the pointers to the instances of
all circuit components, is a good example for this. In this way,
we can avoid the use of fixed-dimension arrays, which have
been problematic in old versions of EMTP, and we can enjoy
the ease of programming due to the variable-size feature at
the same time not losing its execution speed in the time step
loop.

A list container is a variable-size array to which a new
entry is inserted at any position. List containers are used in
the XTAP code for analyzing input data, for instance, handling
parameterized subcircuits. Since they are not used inside the
time-step loop, the speed-up process mentioned above is not
required.

V. EXPANDABILITY VS . EXECUTION SPEED

The design methodology mentioned in Section III enables
separately writing the code of the circuit solver and that of
circuit components. This simplifies the entire code structure
and enhances code maintainability. Adding a new component
or a user-defined component becomes an easy task, and the
circuit solver does not have to be modified for this. As a result,
the program becomes expandable, in other words, flexible for
adding new components. This has mainly been realized by
the use of inheritance. However, the use of inheritance always
involves inevitable overhead of execution time, although it is
minimized by the one-time inheritance described in Section
III-C. This must be kept in mind.

If the ultimate objective is to achieve the highest execution
speed, the design strategy described in [11] that does not
use inheritance should be recommended. According to this
author’s view, however, execution speed is not always of the
highest priority, and expandability is also important because
the demand of adding user-defined models is increasing for
design and test purposes. In addition, computers are becoming
faster and faster and compilers of object-oriented languages
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are continuously improved. Therefore, if expandability and
code maintainability are considered to be key points of design,
the proposed design methodology is preferable.

VI. CONCLUSION

This paper has presented a design methodology of an
electromagnetic transient analysis program based on a fully
object-oriented approach. The proposed design methodology
uses an object-oriented approach for the modeling of circuit
components, and this enables that the code of the circuit solver
and that of circuit components can be written separately. Thus,
coding is simplified and code maintainability is enhanced.
A resultant transient analysis program becomes expandable,
in other words, flexible for adding new components. Some
implementation issues have also been discussed in this paper.
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