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 Abstract-- In this paper transmission line transposition is 

analyzed focusing electromagnetic transient phenomena in the 
range up to 10 kHz. Line transposition is implemented to decrease 
phase unbalances at fundamental frequency. In the present paper 
it will be analyzed the error of treating transmission line as 
ideally transposed for all frequency ranges, specifically when 
dealing with switching transients up to 10 kHz. A theoretical 
analysis is performed identifying the unbalances between the 
phases considering the transmission line ideally transposed and 
considering the line with actual transposition sections. The 
difference between both line representations under transient was 
analyzed. The frequency dependence of transmission line 
parameters was properly represented. 
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I.  INTRODUCTION 

HE transmission system should not introduce any 
unbalance to the energy transported. However, the 

geometry of the transmission towers do create unbalances 
because the distances between phases and between the phases 
to earth are not equal; consequently, it can generate unbalance 
to the power flows at fundamental frequency. 

The geometries of the towers of high voltage transmission 
lines produce impedance asymmetry, which in turn causes 
corresponding voltage and current unbalance at the line end. 
The effect of line asymmetry can be eliminated at fundamental 
frequency by the use of phase transposition, dividing the line 
into three, or multiples of three sections. Accordingly, 
transpositions are often used in long transmission lines as a 
mean of balancing fundamental frequency impedance / 
admittance of the line. The transposition in transmission line 
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consists in the change of phases positions. 
In electromagnetic transients studies it is usual to represent 

the transmission lines as an ideally transposed line (ITL). A 
line with actual transposition section (TL) can be accounted as 
an ITL in steady state, but not for all frequency range [1][2]. 
The correct representation of the transmission line is of big 
concern to electromagnetic transients studies. 

In this paper it will be shown that the representation of ITL 
for all frequencies is not totally correct. This is achieved 
through the analysis of the line response in frequency domain. 
The line is represented through transfer function for all 
frequency range both for: a line with its actual transposition 
sections and for an ideally transposed line. Finally a transient 
simulation was performed for both line representation. 

It was possible to observe the error of considering an actual 
transposed line as an ideally transposed line for all frequencies 
important during the occurrence of electromagnetic transient 
phenomena. 

II.  FUNDAMENTAL THEORY  

A.  Transmission Line Electrical Parameters 
Calculated for Single Circuit   

The electrical parameters of a transmission line are 
expressed in matrices form, whose dimensions correspond to 
the number of line conductors (sub conductors that compose 
the phase and the ground-wires). The matrices of longitudinal 
and transversal parameters are reduced to equivalent matrices, 
whose dimensions correspond to the number of phases of the 
line. 
    1)  Matrix of Longitudinal Parameters 

( ) ( )
n,...,3,2,1j,i

ijXextijXeijXcjijReijRcijZ

=

++⋅++=
             (1) 

Where: 

 n: number of conductors. 
jXcRc+  : internal impedance of conductor per unit 

length. 
jXext  : external reactance between conductors per unit 

length (supposing  ideal ground). 
jXeRe+  : correction of the external impedance per unit 

length (because the ground is not an ideal conductor). 
The units of all elements are in Ω/m. 

T



    2)  Matrix of  Transversal Parameters per unit length 

[ ] 1A02jijY −⋅ε⋅ω⋅π⋅⋅=  (2) 

Where: 

ω  : angular frequency (rad/s). 

0ε  : permittivity of air (8.85 pF/m) 

 A : matrix defined by elements ( )ijd/ijDln , 

ijdijD , : distance between conductor i  and its image j , 

and distance between conductors i and j , respectively. 

In the Fig. 1 it is presented the tower of the transmission 
line analyzed. 

 
Fig. 1.  Schematic representation of studied line tower. 
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Fig. 2.  Self resistance per unit of length. 

The longitudinal parameters were calculated in frequency 
domain for the transmission line analyzed, supposing a ground 
resistivity of 1000 Ω.m. In Fig. 2 and Fig. 3 the self resistance 
and self inductance, per unit of length, in frequency domain 
are presented. 

The electrical parameters presented are calculated 

supposing a non-transposed line. It can be observed in Figs. 2 
and 3 that the self values for phases “a” and “b” are not equal, 
while the values for phase “a” and “c” are equal, which is 
coherent with the line tower depicted in Fig. 1. 

 
Fig. 3.  Self inductance per unit of length. 

B.  Multiphase Transmission Lines 

The fundamental equations that describe wave propagation 
for a multiphase transmission line in frequency domain can be 
presented as: 

]V][Y[
dx

]I[d
];I][Z[

dx

]V[d
p

p
p

p −=−=  (3) 

The second order differential equations, in matrix form, 
involving state variables (voltage and current) are defined as 
the following: 
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where: 
 x  : longitudinal distance. 

]Z[  : impedance matrix per unit of length 
]Y[  : admittance matrix per unit of length 

]V[ p  and ]I[ p : column phase-to-earth voltages and 

longitudinal phase current vectors, respectively. 
The great difficulty in the solution of differential equations 

for multiphase transmission line is due to coupling between the 
phases, as the variation in each phase depends on the others. 

With the aid of linear transformations to voltage and current 
(eigenvalues and eigenvectors) it is possible to represent a 
multiphase system eliminating the coupling.  

This procedure makes it possible to manipulate “n” 
uncoupled circuits, where “n” is the number of phases in 
original circuit. The relation between voltage and current in 
natural propagation modes “m” and phase “p” is defined by: 

]mvp V[]T[]V[ ⋅=  (5) 

]I[]T[]I[ mip ⋅=  (6) 

Where ]T[ v  and ]T[ i  are square matrices related to the 

voltage and current, respectively.  
Applying the equations (5) and (6) in (4), the equations to 

represent the natural propagation modes are: 



]mV[2]mV[]vT[]Y][Z[]1
vT[

2dx

]mV[2d ⋅Γ=⋅⋅⋅−=  (7) 

]mI[2]mI[]iT[]Z][Y[]1
iT[

2dx

]mI[2d ⋅Γ=⋅⋅⋅−=  (8) 

The matrices ]T[ v  and ]T[ i  are chosen so that through 

linear transformation, the matrices 2Γ  of (7) and (8) becomes 

diagonal matrices. The matrices 2Γ  are formed by the 
eigenvalues and are related to the line wave propagation [4]. 

 
In (9) the modal propagation coefficient matrix is 

presented. The matrix ][ cZ  also has diagonal form in modal 

domain and is defined by 1]Y[]Z[][ cZ −⋅= . 
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Each transformation matrix, described in (7) and (8) may be 
solved separately like a set of single-phase wave equations. 

The transmission line can be represented as a two-port 
elements (ABCD constants), as depicted in (10) and (11), in 
mode domain where ][γ  and ]Z[ c  are diagonal matrices 
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being: 
[ ]( ) [ ]( )
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 (11) 

C.  Ideally Transposed Line (ITL) 

A transmission line is called ideally transposed line (ITL) if 
the transposition is supposed equivalent to ideal transposition 
for the entire frequency range of the study. The transposition 
results in an almost perfect balanced line parameters if the line 
is divided in small transposition sections when compared with 
¼ of wave-length (λ) of the involved frequencies. For 
fundamental frequency this is achieved with section around 
100 km, and total line parameter can be considered as the 
mean value of each line section (12). 

 
Fig. 4.  Line scheme transposition with three sections (TL3). 
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This equivalent matrix of ITL has all diagonal elements 
equal and all off-diagonal elements also equal. 

The Clarke’s transformation, TCL , matrix can be used as the 
transformation matrix for ITL: 
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It is usual to consider the line as ITL for the entire 
frequency range in transient studies, which is not valid for 
higher frequencies where ¼ of the wave length is not much 
higher than the line transposition cycle (300 km). For instance 
for 5th harmonic, 300 Hz, supposing fundamental frequency 
equal 60 Hz, the wave length is a little less than 1000 km, and 
the line cycle of 300 km cannot be considered much lower 
than λ/4. 

D.  Line with Actual Transposition (TL4) 

A line with actual transposition can be represented with two 
or three structures of transposition per transposition cycle. A 
line with two structures of transposition (TL3) has the same 
scheme of Fig. 4, where each section is considered as a small 
non-transposed line. A line with three structures of 
transposition or four sections has the particularity of equal 
phase positions at both transposition cycle extremities (Fig. 5). 

 
Fig. 5.  Line scheme transposition with four sections (TL4). 

To represent an actual transposed line each section should 
be considered as a non-transposed line (NTL) and the 
transposition itself should be included as an additional 
element.  

The modal transformation of a non-transposed line has to 

be obtained through eigenvectors of 2Γ  [3][4][5]. 

E.  Analyzing Wave Propagation in Phase Domain  

The solution of the wave propagation (3) using modal 
transformation is an elegant process. For ITL the analysis of 
the sequence components or homopolar/non-homopolar modes 
behavior is interesting for power systems studies.  

The propagation equation can be solved straight in phase 
domain, avoiding any modal transformation.  

Consider a uniform line with length section ℓ . Supposing a 
very short finite section ∆ℓ , considering the derivative 
approximation at point x applied to the interval x and x + ∆ℓ 
(what results in an error of the order of ∆ℓ). Between the two 
points identified by 1 and 2 the distance ∆ℓ = ℓ / 2n : 

U2 = U1 – Z . ∆ℓ . I1 (14) 
I2 = – Y . ∆ℓ . U1 + I1 (15) 

or 
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being l∆W  the voltage and phase current transfer function 

between the two terminals of section length ∆ℓ and I the 
identity matrix.  



Supposing a very short finite section ∆ℓ , considering the 
derivative approximation varying linearly with x , applied at 
the interval x and x + ∆ℓ (what results in an error of the order 
of ∆ℓ2). Between the two points identified by 1 and 2 the 
distance ∆ℓ = ℓ / 2n : 
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being l∆W  the voltage and phase current transfer function 

between the two terminals of section length ∆ℓ and I the 
identity matrix. 

The formulation (19) allows a ∆ℓ value higher than the one 
in equation (16), avoiding the use of an extremely small “∆ℓ” 
section length, which may originate a significant numerical 
error due to the valid digits of numerical operations.  

The matrix W representing the transfer function of line 
length ℓ is obtained from the cascade of 2n identical sections of 
the line, each one with length ∆ℓ. The solution of the wave 
propagation is obtained by n successive squaring of two-port 
representations of the π-section (Fig. 6) [2]. 

 

Qp-1 Qp 

 

Fig. 6.  Transmission line represented by cascade of π-sections 

By example, the matrix applicable to a 300-km line can be 
obtained from the transfer matrix applicable to a “line” of 
300 km / 1024 , squared 10 times. for a “line” of 300 km / 
1024 , the hyperbolic functions tanh and sinh coincide with 
their arguments, and cosh is practically 1, with high numerical 
accuracy the error of (19) is very small. The ¼ wave length for 
10 kHz is around 7.5 km, which is much higher than 300 km / 
1024 . So, the very simple indicated procedure, based in (19) 
and (as an example), in 10 successive squaring, is equivalent 
to consider hyperbolic functions (e.g. sinh, cosh, tanh) 
applied to matrices and to manipulate the obtained matrices.   

 
Fig. 7.  Transmission line scheme with actual transposition (TL4). 

III.  L INE TRANSFER FUNCTION  

Analyzing (11) it can be seen that matrices [A], [B], [C] 
and [D] represent the line transfer function, being all 
frequency dependent. 

A.  Transfer Function Matrix of an Actual Transposed 
Line 

The transfer function matrix of the actual transposed line 
(TL4) depicted in Fig. 7 considers sections of non-transposed 
line and the transposition itself. The transformation matrices of 
the non-transposed line sections were obtained using the 
Squaring Method described above.   

The matrix representation of transfer function in phase 
domain of that non-transposed section is: 
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The representation of the others sections has the same form 
of (20) but these representations change when they are 
associated with the transposition matrix. 

The transposition transfer function is expressed by: 
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The scheme of TL4 representation is presented in Fig.6. 
In the Fig. 7 the transfer function matrix represents each 

section. To obtain the complete line representation it is 
necessary to multiply the line sections transfer function 
matrices by the transposition transfer function in sequence. 
Finally, the total transference matrix that represents the 
complete line TL4 is obtained. 

 
Fig. 8.  A22 modulus for ITL and LT4. 

IV.  RESULTS 

In Fig. 8 to Fig. 11 some results are presented for elements 
A22 and B13 of two-port element (17) considering the actual 



line transposition (TL4) and ideal transposition (ITL). The 
sub-matrix A represents the voltage ratio supposing the line 
opened at the sending end (I1 = 0), while the sub-matrix B 
represents the ratio between the voltage at the receiving end 
and the current at the sending end, supposing the line short-
circuited at sending end (V1 = 0). 

The others elements of transfer function matrix have similar 
behavior. For frequencies above 180 Hz the discrepancy 
between the two line representations increases.  

 
Fig. 9.  A22 Arguments for ITL and LT4. 

 
Fig. 10.  B13 modulus for ITL and TL4. 

 
Fig. 11.  B13 arguments for ITL and TL4. 

In Fig. 12 to Fig. 15 the modulus error considering the ideal 
transposition representation and the actual transposed line 
representation are presented. 

The error calculated was the ratio between the difference 
between the two representations and the LT4 result. The 
discrepancy between the two representations is significant and 
should be considered for quality studies and electromagnetic 
transient studies as well. If it is simulated a phenomenon with 
dominant frequency in the range where the line representation 
is inadequate, the results obtained will be incorrect. 

 
Fig. 12.  Error between ITL and TL4 A22 modulus. 

 
Fig. 13.  Error between ITL and TL4 B13 modulus. 

 
Fig. 14.  Error between ITL and TL4  C12 modulus. 

V.  TRANSMISSION LINE ENERGIZATION 

In order to observe the influence of the line representation 
in a transient study a simple case of line energization was 



simulated in EMTDC. The system modeled consisted of an 
ideal source (fundamental frequency 60 Hz) behind a system 
equivalent modeled as a 50-km long line considered ideally 
transposed. The line was modeled both as ITL and TL4 with 
312.5 km length. A pre-insertion resistor of 300 Ω was used. 
The frequency dependence of the longitudinal parameters was 
modeled through the phase domain model available in 
PSCAD/EMTDC. The system voltage was 440 kV and the nominal 
base voltage used was 359.26 kV. The parameters of the equivalent 
50 km line considered to model the equivalent system, at 60 Hz , are:  

R0' = 0.3097 Ω/km  R1' = 0.0228 Ω/km 
Xl 0' =1.4152 Ω/km    Xl1' = 0.3202 Ω/km 
Xc0' = 3.121 nS/km  Xc1' = 5.153 nS/km 

 
Fig. 15.  Error between ITL and TL4 C13 modulus. 

TABLE I 
VOLTAGE AT RECEIVING END – PHASE TO GROUND PEEK VALUES  

Per unit reffered to 
nominal voltage  

Harmonic 
order 

ITL TL4 

- 1.25 1.28 
10 1.86 1.52 
17 1.64 1.80 
30 1.53 1.46 
38 1.45 1.40 
53 1.37 1.33 
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Fig. 16.  Voltage at receiving end terminal for LT4 and LIT – 10th harmonic 
currentnjection. 

Some energization cases were simulated as depicted in Table I. A 
50 Arms harmonic current source (positive sequence) was included in 
some cases to highlight the difference among the line representations. 
For instance, for the case with the 10th harmonic current injection the 
difference was rather high, around 22 %. For the case with 17th 
harmonic current injection the difference overvoltage difference was 
10 %. In the former case the highest overvoltage occurred for the 
ideally transposed line while in the second case the highest 

overvoltage occurred when the transposition was properly 
represented.   

The voltages at receiving end for both line representations during 
the energization simulation are presented in Fig. 16. 

The cases were simulated to point out the discrepancy between the 
models. No effort was applied to identify worst cases, but if a series 
of statistical switching were simulated the difference between the 
representations would be stressed. 

VI.  CONCLUSIONS 

The correct representation of a transmission line is very important 
to perform accurate studies. This paper presents an analysis pointing 
out the inaccuracies of representing a line with actual transposition 
sections as an ideally transposed line for all frequency range in an 
electromagnetic transient study. 

The discrepancy between the actual line representation and the 
approximate representations as ITL can produce very different results 
when the line is submitted to electromagnetic transients due to usual 
maneuvers or during the occurrence of faults. Specifically for the line 
in example, the presence of the 10th or the 17th harmonics can result 
in very different perturbation in terms of voltage and current in the 
extreme of the line. As presented, the worst case does not always 
occur when the line has a simplified or a more accurate 
representation. It is important, therefore, to properly represent the 
system being analyzed.   

When a specific case is studied, the interaction between the line 
and rest of the system should also be analyzed, which can even 
increase the differences found. 

The transposed line must be correctly represented, mainly if loads 
with high harmonic generation exist in the system. 
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