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Abstract— Simulators of the Electromagnetic Transients Pro-
gram (EMTP) type are widely used for the study of high-
frequency transients in power electric systems. For the study of
electromechanical transients, where the main interest is to focus
only on deviations from the AC waveform, the EMTP approach
is not efficient. In this paper, a branch companion model
that is suitable for both electromagnetic and electromechanical
transients simulation is proposed. It processes analytic signals
whose Fourier spectrum can be shifted in accordance with the
objective of the study. The proposed method opens the way for
a unified description of electromagnetic and electromechanical
transients simulation.

Index Terms— Algorithms, electromagnetic transients, elec-
tromechanical transients, modeling, power system simulation,
power system transients.

I. INTRODUCTION

Simulators derived from the Electromagnetic Transients
Program EMTP [1] are the most widely used tools for the
emulation of electromagnetic transients in power systems. In
the EMTP, the differential equations describing the behavior of
the branches of the network are discretized using trapezoidal
integration. The resulting difference equations are rearranged
so that each branch is modeled through a circuit consisting
of resistors and DC sources, and this branch model is also
known as a companion model [2]. The network model is
obtained by connecting the companion models in accordance
with the topology of the network of interest. Mathematically,
this step is implemented using nodal analysis techniques and
the stamping method for direct construction of the nodal
admittance matrix of the network. The effectiveness of this
approach has contributed to the popularity of the EMTP.

For the study of electromechanical transients, the EMTP
approach is not efficient. Electromechanical transients entail
low-frequency deviations from the carrier frequency, which is
either 50 Hz or 60 Hz in large power electric systems. In the
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EMTP simulation, the carrier frequency component as well as
deviations are represented. Therefore, the time step must be
chosen sufficiently small to allow for the representation of the
carrier frequency component.

Since it is often desirable to study only the electrome-
chanical transients, simulators based on phasor calculus that
eliminate the carrier frequency component from the waveforms
were developed. Dynamic phasors are defined as the com-
plex time-varying Fourier series coefficients associated with
the waveforms [3]–[5]. In [6], dynamic phasor calculus was
combined with time step control and has been shown to cover
a spectrum ranging from electromechanical to electromagnetic
transients.

The contribution of this work lies in the creation of a
branch companion model that can be used both for power
system simulation of the EMTP type as for simulation of the
dynamic phasor type. Following this introduction, the EMTP
type is reviewed in Section II. In Section III, the novel method
is discussed. An application example is studied in Section IV.
Conclusions are drawn and an outlook is given in Section V.

II. ELECTROMAGNETIC TRANSIENTS SIMULATION

In what follows, three concepts essential to EMTP sim-
ulation are reviewed: the discretization of the differential
equations, companion modeling, and network modeling.

A. Discretization

The behavior of the inductor depicted in Fig. 1 is described
through the following differential equation:

diL(t)

dt
=

vL(t)

L
: (1)

Trapezoidal integration [7] yields:

vL(k) + vL(k � 1)

2
= L

iL(k)� iL(k � 1)

�
; (2)

where k is the time step counter, and � is the time step size.
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Fig. 1. Current and voltage conventions for an inductor



B. Companion Modeling

The discretized form (2) can be rearranged as follows:

iL(k) = GL vL(k) + �L(k) ; (3)

with:

GL =
�

2L
; (4)

�L(k) = iL(k � 1) +
�

2L
vL(k � 1) : (5)

The inductor is thus modeled through a conductance GL and a
history source �L(k). The resulting companion model is shown
in Fig. 2.
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Fig. 2. Companion model of an inductor for electromagnetic transients
simulation

In the same way as for the inductor, models can be found
for other branches of networks and circuits [1]. In the case of
nonlinear branches, the equivalent conductance may change
during simulation.

C. Network Modeling

The network model is obtained through direct construc-
tion [2], also referred to as stamping, where all branches
are conceptually removed from the network and then added
successively in order to add the contributions of the companion
model conductances to the emerging nodal admittance matrix
in accordance with the network topology. The equation system
for the network model is then of the following form:

Y (k)v(k) = j(k) : (6)

If there are N unknown nodal voltages, then the nodal
admittance matrix Y is of size N �N . Vector v contains the
unknown and dependent nodal voltages, and j is the vector of
the source dependent nodal current injections. It is assumed
that the vector j is known as it contains contributions from
history sources and excitation functions. The equation system
is solved at each time step k for v.

III. DIVERSE ELECTROMAGNETIC AND

ELECTROMECHANICAL TRANSIENTS SIMULATION

Electromechanical transients entail waveforms of narrow
bandwidth and, as discussed in Section III-A, these waveforms
can therefore be represented as equivalent lowpass signals in
the form of complex envelopes. In Section III-B, the differ-
ence term resulting from the discretization of the differential
equation is applied to the complex envelope rather than the

original real signal. Because of the lowpass character and
lower maximum frequency, a larger sampling rate can be used
to accurately track the transformed signals. In Section III-C,
the difference equation is brought into a format that allows
for the representation in the form of a companion model. The
latter can be used for electromagnetic and electromechanical
transients simulation. In Section III-D, the setting of a novel
simulation parameter is considered. The network modeling is
discussed in Section III-E.

A. Complex Envelope

The complex envelope E [ s(t) ] of a real bandpass signal
s(t) with a carrier frequency fc is obtained through two major
steps. First, the so-called analytic signal s(t) [8] is formed by
adding to s(t) an imaginary part that is equal to the Hilbert
transform of s(t). Second, the Fourier spectrum F [s(t)] is
shifted by fc towards lower frequencies.

1) Hilbert Transform: The Hilbert transform is defined as
follows:

H[s(t)] =
1

�

1Z
�1

s(�)

t� �
d� : (7)

Once H[s(t)] is known, the analytic signal can be formed by
adding H[s(t)] as a quadrature component:

s(t) = s(t) + jH[s(t)] : (8)

The effect of the creation of the analytic signal on the Fourier
spectrum of a bandpass signal is shown in Fig. 3. While the
spectrum of the real signal s(t) extends to negative frequen-
cies, this is not the case for the spectrum of the corresponding
analytic signal s(t).
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Fig. 3. Application of the Hilbert transform

2) Frequency Shifting: The analytic signal can be shifted
by the frequency fs, which is hereafter referred to as shift
frequency, as follows:

S [ s(t) ] = s(t) e�j2�fst : (9)

For fs = fc, the complex envelope is obtained:

E [ s(t) ] = s(t) e�j2�fct : (10)

Through this operation, the spectrum is shifted by the carrier
frequency fc as shown in Fig. 4.



cf cfcf� cf�
f f

cj2
[ ( )] ( ) e

f t
s t s t

��

�

[ ( )]s t [ [ ( )]]s tE
E

FF

Fig. 4. Shifting by the carrier frequency

The angular shift frequency is directly related to the shift
frequency:

!s = 2�fs : (11)

B. Discretization

As also suggested in [5], the waveforms can be represented
through analytic signals in order to exploit the concept of
complex envelopes in the context of simulation. Using analytic
signals, (1) becomes:

diL(t)

dt
=

vL(t)

L
: (12)

The corresponding shifted analytic signals are obtained as
follows:

S [ iL(t) ] = iL(t)e
�j!st : (13)

Insertion into (12) yields:

d(S [ iL(t) ]e
j!st)

dt
=

vL(t)

L
: (14)

Eq. (14) can be expanded as follows:

dS [ iL(t) ]

dt
ej!st + j!siL(t) =

vL(t)

L
; (15)

and solved for the derivative:

dS [ iL(t) ]

dt
= e�j!st

�
�j!siL(t) +

vL(t)

L

�
: (16)

Trapezoidal integration is used to transform (16) into a differ-
ence equation:

S [ iL(k) ]�S [ iL(k � 1) ]

�
=

e�j!sk�

2
��

�j!s

�
iL(k)+ iL(k � 1)ej!s�

�
+
vL(k) + vL(k � 1)ej!s�

L

�
:

(17)

The difference term on the left of (17) is expressed in
terms of the complex shifted waveform. For f s = fc, the
complex shifted waveform equals the complex envelope. Its
Fourier spectrum has a lower maximum frequency compared
with the Fourier spectrum of the analytic signal. Consequently,
a larger time step size can be used to track the waveform in
simulation. This in turn leads to a smaller computational effort.

C. Branch Modeling

Backsubstitution of complex variables and the gathering of
like terms in (17) yields:

iL(k)� iL(k � 1)ej!s�

�
=

1

2

�
�j!s

�
iL(k)+ iL(k � 1)ej!s�

�
+
vL(k) + vL(k � 1)ej!s�

L

�
:

(18)

Eq. (18) can be rearranged as follows:

iL(k) = GL vL(k) + �
L
(k) ; (19)

with:

GL =
�

2L(1 + j!s
�
2 )

; (20)

�
L
(k) =

ej!s�

 
1� j!s

�
2

1 + j!s
�
2
iL(k � 1) +

�

2L(1 + j!s
�
2 )

vL(k � 1)

!
:

(21)

This is the same format as found for Eqs. (3), (4), and (5).
Therefore, the companion model is of the same structure as
shown in Fig. 5. It differs from the one in Fig. 2 in that now
complex quantities appear.
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Fig. 5. Companion model of an inductor for diverse electromagnetic and
electromechanical transients simulation

The envelopes of the waveforms can be represented very
efficiently for fs = fc. For fs = 0 Hz, GL in (4) and �L
in (5) can be derived from GL in (20) and �

L
in (21) and

are therefore suitable for representing the carrier. Models for
branches other than the inductor are derived in an analogous
manner.

D. Shift Frequency Setting

The shift frequency is an additional simulation parameter
that has been introduced here. It is set prior to the simulation
start depending on the type of phenomena to be studied.
For the simulation of electromagnetic transients, no frequency
shifting is required. However, if the simulation of electrome-
chanical transients is considered, then fs = fc is appropriate.

E. Network Modeling

Nodal analysis techniques are used in the same way as
described in Section II-C. The companion models for diverse



electromagnetic and electromechanical transients simulation
are used. This leads to a complex form of (6):

Y (k)v(k) = j(k) : (22)

The meaning of the symbols corresponds to those introduced
for Eq. (6).

IV. APPLICATION

In order to test the method, the network in Fig. 6 is
considered. A three-phase AC source is connected to an
infinite bus via a step-up transformer and a short line. The
AC source is representative of a 60 Hz distributed synchronous
generating unit with a rating of 50 kVA, 480 V. The reactances
are given in per unit on the base of 50 kVA, 480 V. The
assumed balanced conditions allow for per-phase analysis [9],
performed hereafter. The infinite bus serves as the reference to
measure angles: E

1
= 0:98 \0 Æ. The steady state conditions

are marked by subscript 0:

E0 = 1:10 \24:7 Æ, V 0 = 1:00 \10:7 Æ,

I0 = 0:92 \� 2:4 Æ, P0 = 0:9 .

AC source transformer short line infinite
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E V

I
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Fig. 6. Test network for AC source perturbation in a balanced three-phase
network represented for per-phase analysis.

Assuming that the generator has the small inertia constant
of H = 1:5 s and that the overall system is lossless, the natural
frequency of the system at which undamped electromechanical
oscillations occur is fn = 2:5 Hz [10]. This means that small
perturbations of the angle of the AC source describe undamped
harmonic oscillations at the natural frequency.

In the performed test simulations, the amplitude of the
oscillation described by the angle of the AC source was
Æ̂E = 3 Æ. Two different time step sizes were considered.
In the first case, the time step size of 50 �s was used and
the frequency shift was fs = 0 Hz. This is an appropriate
setting for an electromagnetic transients simulation. The AC
waveform of the terminal current i(t), which corresponds to
I in Fig. 6, and the extracted envelope are shown in Fig. 7.

This is a type of simulation where the envelope information
is of strong interest, as is typical of an electromechanical
transients simulation. For tracking the envelope, a much larger
time step size can be chosen when fs = 60 Hz. In Fig. 8 this
is illustrated for � = 5 ms, fs = 60 Hz. Since the time step
size was increased by a factor of 100 compared with the case
when fs = 0 Hz, the computational effort was reduced very
strongly.

0 0.05 0.1 0.15 0.2
−100

−50

0

50

100

cu
rr

en
t

(A
)

time (s)

Fig. 7. Carrier and envelope of terminal current i(t) simulated at fs = 0 Hz
with � = 50 �s; solid light: carrier; solid bold: envelope.
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Fig. 8. Envelope of terminal current i(t) simulated at fs = 60 Hz with
� = 5 ms.

V. CONCLUSIONS AND OUTLOOK

A concept for the modeling of network branches for the
diverse simulation of electromagnetic and electromechanical
transients simulation was introduced. It allows a unified de-
scription of branch characteristics and efficient simulation of
diverse transients. The developed branch companion model
processes analytic signals and contains the shift frequency as
a parameter. For fs = 0 Hz, the Fourier spectrum is retained
as it is in the case of simulators of the EMTP type used
for electromagnetic transients simulation. For fs = 60 Hz,
the simulation is based on dynamic phasors of interest for
electromechanical transients simulation. The network model
is constructed using the stamping method.

With the enhanced capability, the complexity is also in-
creased. An important direction of further work is therefore
aimed at facilitating the application of the proposed method-
ology. For example, the setting of the shift frequency f s can
be automated. To do so, the simulated signals are checked
for the presence of a carrier and the shift frequency can be
set accordingly. In this context, it is also possible to consider
diverse shift frequency settings within one simulation. The in-
tegrated simulation of electromagnetic and electromechanical
transients based on one methodology can so be coupled with
ease of use.
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