An Adaptive, Self-checking Algorithm for Controlled Fault Interruption

R. Thomas, Member, IEEE, Prof. J. Daalder, Dr C-E. Sölver

Abstract—A method for achieving a controlled arcing time on high voltage (SF₆) circuit breakers during fault interruption is presented. Using least squares based regression, a model of a sampled (fault) current is generated. If the model is found to be sufficiently accurate, the sampled current is extrapolated to predict current zero times for use as targets for synchronizing the opening command to the circuit breaker so as to achieve a pre-determined optimum arcing time. Benefits of such controlled interruption include reduction in circuit breaker electrical wear, potential to increase circuit breaker switching ratings and facilitation of new high voltage interruption techniques. Novel aspects of the scheme include the use of an hypothesis test for verification of the accuracy of the modeled current.

Keywords: controlled switching, fault interruption, circuit breakers, arcing times, adaptive control

I. INTRODUCTION

Controlled (“synchronized” or “point-on-wave”) switching has become widely used with high voltage (HV) circuit breakers in order to mitigate transients that arise from switching certain well-defined loads. CIGRÉ working group A3.07 has produced a comprehensive state-of-the-art survey of the conventional application of controlled switching [1], [2].

Unlike conventional controlled load switching that is focused on switching transient mitigation, the method presented here focuses on fault interruption. Specifically attention is on achieving a pre-determined target arcing time during interruption. The most obvious benefit of such arcing time control is reduction in the electrical wear on the circuit breaker. Other benefits may include the possibility to uprate a circuit breaker or facilitate new interruption technologies, including power electronic or “SF₆-free” interrupters.

Development of controlled (“point-on-wave”) interruption of fault currents has, until recently, been considered impractical for technical reasons. A main obstacle is the need to determine the optimal trip command solution within the reaction time of the associated protection relays (typically less than ½ cycle). Pöltl and Fröhlich [3] proposed a method of controlling the arcing time by targeting so-called “safepoints” that were determined by a rapid estimation of the phase angle of a fault current within ½ cycle after fault initiation. Pöltl further developed a means of single or multiple phase fault identification using an artificial neural network (ANN) so as to enable management of a wide range of “typical” fault cases [4]. Pöltl’s results from computer simulations indicated significant reduction (30-50%) in the mean fault current seen by the breaker using the “safepoint” method.

While the “safepoint” method offers a relatively fast and conservative means to control arcing times, it lacks some important features. First, consideration must be give to what happens when the control scheme is unable to reach a viable target solution within the protection system response time. Second, for effective data processing it is important to detect the fault initiation instant, particularly for any method applying a continuous moving data sampling window. Third, the fault current model for target prediction should ideally be able to manage a wide range of fault behaviours.

II. PROPOSED METHOD - OVERVIEW

The proposed method seeks to address the limitations of the safepoint method described above. What follows is a summary of the initial results of an on-going research project [5].

Figure 1 shows interruption of a single phase asymmetrical fault current using both controlled (CFI) and non-controlled fault interruption (non-CFI).

<table>
<thead>
<tr>
<th>Breaker Contacts</th>
<th>Non-CFI</th>
<th>CFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Command</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-CFI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: Direct (non-controlled) and controlled fault interruption example

It should be noted that in the context of this work “controlled” interruption means targeting a specific current
zero and co-ordinating the trip signal to the circuit-breaker in order to achieve a pre-selected arcing time. As such the control scheme is supplementary to the protection system. The decision whether or not the specific circuit-breaker should be tripped, remains with the protection system. The overall control scheme is described in Figure 2.

In the conventional, non-CFI case the protection system issues the trip command directly to the circuit-breaker as soon as it has determined a fault (within its protection zone requirements) has occurred. After the trip command is sent, the breaker opens and will experience a certain arcing time between the time its arcing contacts first separate and when the current is eventually interrupted at a current zero.

As seen in the example shown in Figure 1 interruption may not necessarily be achieved at the first current zero after arcing contact separation. This is due to the fact that the circuit-breakers exhibit minimum arcing times for which they can achieve interruption.

It can be clearly seen in Figure 1 that the non-CFI arcing time, t_{ARC_DIRECT}, is considerably longer than the minimum arcing time, t_{ARC_MIN}. The additional arcing time beyond the minimum can be considered as being “wasted” arcing, that contributes to additional electrical wear on the breaker without necessarily adding to certainty of interruption. A primary objective of CFI applied to existing interrupter technologies is to minimize such “wasted” arcing time without undue prolongation of the total fault clearing time.

The proposed CFI method seeks to estimate the time of the first viable current zero for which interruption could be achieved and delay the trip command such that the circuit breaker will experience only a near minimum arcing time. The delay of the trip command is represented by the waiting time shown in Figures 1 and 2.

The process of estimating future viable current zeroes is continuous. If at any stage the CFI scheme is unable to reach a valid estimation of the current’s behaviour and thus a valid current zero prediction, the waiting time is forced to zero. Hence protection tripping is not unduly delayed by a failure of the CFI scheme. Such an approach naturally assumes that the circuit-breaker can still interrupt with a longer than targeted arcing time.

III. PROPOSED METHOD - DETAILS

The detailed implementation of the proposed method will be described in terms of the major processing components; modelling of the current, determination of key parameters, validation of estimated model, determination of target current zero and waiting time, data sampling window control. The main data processing stages are illustrated in Figure 3.

![Figure 3: Example of data processing stages](image)

Data is sampled and an estimation of key parameters describing the fault current according to a preset model is made. Estimated and actual current values are compared within the sampling window range and if sufficiently consistent, the estimated current model is extrapolated in order to find the first viable current zeros available for interruption. Parameter estimation and zero-crossing estimation proceeds until the protection trip is active. Once the protection trip is
active, the trip signal to the breaker will be sent once the waiting time from the CFI calculation has decremented to zero. Details of these steps are now explained below.

A. Fault Current Model

A single phase fault current, \(i(t)\), is modelled according to (1), in conjunction with driving source voltage, \(u(t)\), defined by (2):

\[
i(t) = I_F \cdot (\sin(\omega t + \alpha) - \phi) + \sin(\omega t + \phi) \cdot e^{-\tau t} + I_o \cdot e^{-\tau t}
\]

\[
u(t) = U \cdot \sin(\omega t + \alpha)
\]

where
- \(I_F\) = peak value of symmetrical fault current
- \(I_o\) = instantaneous value of pre-fault current at fault start
- \(\omega\) = angular frequency
- \(\alpha\) = phase angle on source voltage at fault initiation
- \(\phi\) = fault current phase angle
- \(\tau\) = time constant of fault current asymmetrical component

\[= L / R\]

\[= L = \text{source-to-fault inductance}\]

\[= R = \text{source-to-fault resistance}\]

B. Fault model parameter estimation

The key parameters of the fault current model to be estimated are \(I_F\), \(\alpha\), \(\phi\), and \(\tau\). It is assumed that \(\omega\) can be based on its immediate pre-fault value (e.g. by voltage zero sampling). The fault initiation voltage angle, \(\alpha\), can either be determined separately from the fault current estimation, or directly by this process, as will be explained later. \(I_o\) is obtained in conjunction with determination of \(\alpha\). Assuming values for \(\alpha\) and \(I_o\) are known, (1) is reduced and factorized to the orthogonal form in (3) in order to provide a simplified structure for least means square (LMS) estimation of the remaining unknowns.

\[
i(t) = K_1 \cdot \sin(\omega t + \alpha) + K_2 \cdot \cos(\omega t) + K_2 \cdot e^{-\tau t}
\]

where
- \(K_1 = I_F \cdot [\cos(\alpha) \cdot \cos(\phi) + \sin(\alpha) \cdot \sin(\phi)]\)
- \(K_2 = I_F \cdot [\sin(\alpha) \cdot \cos(\phi) - \cos(\alpha) \cdot \sin(\phi)]\)

To further enable LMS matrix calculation, the exponential term in equation (3) is replaced by a truncated Taylor series approximation \((e^{-\tau t} \approx 1 - \tau t)\), resulting in (6)

\[
i(t) = X_1 \cdot \sin(\omega t) + X_2 \cdot \cos(\omega t) - X_3.1 + X_4.1 + X_4.1
\]

where
- \(X_1 = I_F \cdot \cos(\phi)\)
- \(X_2 = I_F \cdot \sin(\phi)\)
- \(\tau = \omega / |X_2 / X_1|\)

\(X_1\) to \(X_4\) are found via a weighted LMS matrix operation.

K1 and K2 are then calculated from \(X_1\), \(X_2\) and the estimated value of \(\alpha\). The estimated current is then calculated according to (10)

\[
i_{\text{EST}}(t) = K_1 \cdot \sin(\omega t) + K_2 \cdot \cos(\omega t) + K_2 \cdot e^{-\tau t} + I_o \cdot e^{-\tau t}
\]

C. Validation of estimated current model

In order to ensure reliable target estimation and control it is desirable to verify the validity of the estimated current model. This is done by using a so-called “F0” hypothesis test, which is based on a standard analysis test used in linear regression (see [6]) as per equation (11),

\[
F_0 = \frac{\left[\sum_{i=1}^{n} (\hat{x}_i - \bar{x})^2\right] / k}{\left[\sum_{i=1}^{n} (x_i - \bar{x})^2\right] / (n - p)}
\]

where
- \(n\) = number of data samples compared
- \(k\) = number of regression coefficients ("unknowns")
- \(p\) = number of columns of "A" matrix (= \(k\))
- \(\hat{x}_i\) = \(i^\text{th}\) estimated value
- \(\bar{x}\) = mean of sampled values
- \(x_i\) = \(i^\text{th}\) actual data value

The higher the F0 result for a specific data set comparison, the more accurate is the estimated current model. Empirical investigation found that a limiting value of F0 could be set such that if the F0 result falls below the limit, the estimation is considered too inaccurate to use and the waiting time is forced to zero, as indicated in Figure 2.

D. Target estimation and waiting time calculation

Assuming a valid F0 result has been achieved, the estimated current model is then extrapolated out to a viable interruption current zero crossing search window that extends from the minimum clearing time \((t_{\text{MCT}})\) of the breaker plus one power cycle (as shown in Figure 3). The \(t_{\text{MCT}}\) constraint is set by the nominal opening time of the circuit breaker plus the targeted arcing time. Normally the targeted arcing time is set to be equal to the minimum arcing time of the breaker plus some margin (e.g. +1ms) to allow for variations in breaker opening and arcing time behaviour, plus some residual error in the zero crossing predictions.

Extending the search window one cycle past \(t_{\text{MCT}}\) allows for the wide range in possible zero crossing times for asymmetrical fault currents and ensures at least one current zero should be detected for targeting. The earliest viable zero crossing is the normally chosen target.

Once the target zero crossing time, \(t_{ZC}\), has been estimated, the waiting time, \(t_{\text{WAIT}}\), required to achieve the target arcing time is easily calculated by (12)
The estimated value of window reset to start from the estimated fault initiation instant. Sampled current data is then discarded and the data sampling concluded that a fault (or state change) in the current has observed to decrease by a preset factor ("k"), then it is detection.

A means of utilizing the F0 results from the CFI process has been developed to facilitate such a fault start detection.

If a successive preset number ("N") of F0 results are observed to decrease by a preset factor ("k"), then it is concluded that a fault (or state change) in the current has occurred at the start of the detected trend. The pre-fault sampled current data is then discarded and the data sampling window reset to start from the estimated fault initiation instant. The estimated value of \(\alpha \) is also updated, being calculated from with respect to the last positive slope voltage zero crossing before the fault initiation instant. For CFI start-up, \(\alpha \) can be set according to synchronized closing of the circuit-breaker with respect to the source voltage.

The F0-trend method of fault detection has been found to provided reasonably good results for low noise and low sample rate conditions with setting of “N = 8” and “k = 0.85”. Further enhancement of the fault initiation detection method is planned.

IV. SIMULATIONS AND RESULTS

Numerous simulation tests of the proposed method have been conducted using both artificial network data and actual utility disturbance recording data. The simulations have been made using MATLAB® [7].

In order to assess the performance of the CFI scheme, four key performance indicators were defined:

1. Arc current -- time integral (\(\int |i_{arc}| dt \)) savings
2. Error in target zero crossing times
3. Impact on total fault clearing times
4. Success rate of CFI target estimation

The time integral of the arc current was used as a basis of measure (as compared to \(\int |i_{arc}| dt \)) as previously published investigations of arc wear in HV SF₆ interrupters[8],[9] have proposed different exponents for different breaker types and interruption duties. Using simply \(\int |i_{arc}| dt \) was considered to offer a more “neutral” basis for comparing CFI and non-CFI performance.

The results for arc integral savings are presented in Figures 4 and 5, with respect to a range of time constants, \(\tau \), and fault initiation voltage angles, \(\alpha \). The arc integral savings indicate the possible reduction in the value of the time integral of the arc current by using CFI compared to “direct” non-CFI tripping.

Note that the arc integral saving results are shown for both “ideal” CFI (not using the estimation method and assuming the target current zeroes are exactly known) and for the proposed algorithm tested with 20 data sets of simulated [20%] white gaussian noise (WGN) per \(\alpha, \tau \) combination. For each \(\tau \)-value (or \(\alpha \)-value) the maximum, minimum and mean results are shown for the corresponding full range of \(\alpha \) (or \(\tau \)) values simulated.

It can clearly be seen that the proposed algorithm and “ideal” results are closely matched, even for a relatively high level of random signal noise.

![Figure 4: Arc integral savings w.r.t. time constant, \(\tau \)](image)

![Figure 5: Arc integral savings w.r.t. fault voltage angle, \(\alpha \)](image)
major/minor current loop behaviour before the interruption current zero for the given combination of protection relay, breaker opening and arcing times used in this case.

Figure 6 shows the corresponding target zero crossing prediction errors by the algorithm w.r.t. α for the same range of parameters. Here the results show the errors for the algorithm with and without 20% simulated WGN. While there are some relatively large errors within the 20% WGN results, it can be seen from the mean error results that such extreme errors only form a small percentage of the total results.

Figure 7 shows an example of a simulation made with a fault recording from a 50Hz, 400kV network. The data was sampled at a nominal 3.2kHz rate.

Tests with actual HV system fault disturbance recordings also suggest that persistent 20% WGN is a somewhat extreme test. A more realistic noise simulation could be 10%, decaying rapidly within the first half-cycle of the fault transient. Nevertheless the mean zero-crossing error performance is quite good, being within ±0.2ms using a reasonably low to moderate sampling rate of 3.6kHz.

Figure 7 shows an example of a simulation made with a fault recording from a 50Hz, 400kV network. The data was sampled at a nominal 3.2kHz rate.

The authors gratefully acknowledge the contributions of Svenska Kraftnät, Scottish Power and Powerlink Queensland in the form of fault disturbance records provided for use in development and testing of the work described in this paper.
VIII. BIOGRAPHIES

Richard Thomas (M'2003) was born in Sydney, Australia, in 1965. He graduated from the University of New South Wales, in 1988 with B.E. (Elec). His employment experience includes work with Energy Australia (1984-1991) and ABB in Australia and Sweden (1991-present). His fields of interest include high voltage circuit breakers and controlled switching. He completed his Licentiate degree at Chalmers University of Technology, Gothenburg, in 2004 and is presently continuing his work towards a PhD in the area of controlled fault interruption for high voltage circuit breakers.

Jaap Daalder is Professor of Electrical Power Systems and head of the Power Systems group at Chalmers University of Technology, Gothenburg. He has been a Technical Director with ABB Norway and was employed by the Eindhoven University of Technology, The Netherlands. He is a member of the CIRED and CIGRE Swedish national committees.

Carl E Sölvér obtained his PhD in electric power engineering from Chalmers University of Technology, Gothenburg, Sweden in 1975. He is manager of technical marketing at ABB Power Technologies, High Voltage Products, in Ludvika, Sweden. He is also an Associate Professor at Chalmers University of Technology. He is a member of the Swedish National Committee of Cigré. He is the convenor of Cigré Working Group A3.06, Reliability of HV equipment. He is the chairman of the Swedish National Committee for HV switchgear standards. Until recently, he was the convenor of IEC SC17A WG29, electrical endurance of HV circuit breakers.