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Abstract— Power quality monitoring has ad-
vanced to an important tool for system evalua-
tion and solving power-related problems. As a
consequence the increased amount of recorded
data requires more sophisticated analysis meth-
ods. The paper proposes a system for au-
tomated recording and classification of power
quality disturbances. The system features sta-
tistical classification techniques applied to a
frame-based event model. Results and expe-
riences made by a test in a low-voltage power
system are presented.
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I. INTRODUCTION

By the increased interest in Power Quality (PQ),
monitoring PQ parameters has become an essential
task for performance evaluation and troubleshooting
in power systems. Two major fields of application for
PQ monitoring can be quoted.

Permanent monitoring in order to characterize
power system performance is a preventive task. By
understanding the normal PQ performance, problems
can quickly be identified. In addition it allows utili-
ties to prove the system’s compliance to standards like
EN50160 [1] and EN61000 [2][3] in order to match re-
quirements of customers. For competitive reasons the
level of PQ performance may be a valuable information
for utilities in the near future.

PQ troubleshooting is a reactive application of PQ
monitoring. When facing power-related problems in
facilities, the principle strategy is first to inspect the
site and to gather system information. Then the system
is monitored over a certain period of time, usually one
or more weeks. After successful analysis of the recorded
data corrective solutions can be applied to overcome
the problem.

These two applications of PQ monitoring have a
common aspect: the analysis deals with a huge amount
of recorded data. Although steady-state measurements
are analyzed automatically, the analysis of recorded
events is still done manually by visual inspection, hence
very time consuming and requiring a high expertise.
Here a tool which is able to identify certain types of
events automatically may reduce this analysis effort.

This paper proposes a method that classifies the
type of PQ event automatically by its typical charac-
teristics.

Some approaches have been studied applying arti-
ficial intelligence techniques before, one using artificial
neural networks (ANN) [4], another applying a rule-
based expert system [5]. These two approaches have
achieved useful results, but offer low information about
classification reliability.

The present approach uses statistical classification
techniques on a frame-based event model. The basic
methods have their origin in the field of speech recog-
nition, where they have successfully been applied [6][7].
The key idea is, that in speech a single word consist of a
sequence of distinct phones, that characterize the word.
Hence identification of an unknown spoken word works
by classification of phones and analyzing the phone se-
quence. Translating this method to the problem of PQ,
it is assumed, that a PQ event can be split into a se-
quence of characteristic waveform frames. Similar to
language, the set of possible PQ events defines an event
vocabulary, a certain syntax of waveform frames deter-
mines a certain event.

A main objective of this classification system (CS)
is robust and reliable type identification of PQ events.
Robustness means, that for the benefit of abstraction
capabilities and classification performance very special
event types are not considered as targets. Reliable
means, that a criterion has to be introduced, which
assesses the quality of the classification result. As an
open system, the CS should allow to improve its ref-
erence data in case of poor classification quality. Also
a simple possibility for modifications and extensions of
the event vocabulary should be realized.

First an overview of structure and main features
of the PQ monitoring system prototype is given. In
section III the individual modules of the monitoring
system and their operation are discussed. Section IV
describes a field test of the system and presents results
and experiences, which have been achieved. Conclu-
sions and future improvements are summarized in sec-
tion V.

II. SYSTEM OVERVIEW

The PQ monitoring system prototype, which incor-
porates the CS for PQ events, consists of three major



modules. The structure is given in figure 1.
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Fig. 1. Modules of the PQ monitoring and classification system

The data acquisition (DAQ) and trigger module es-
tablishes the interface of the CS to the power system.
The CS is voltage oriented, hence the three phase-to-
neutral voltages are connected to the monitor by iso-
lating probes. In addition three current signals can be
measured for more detailed PQ analysis. The DAQ and
trigger module permanently calculates steady-state pa-
rameters, such as RMS values of fundamental and har-
monic voltages and currents. Moving means of these
parameters are stored for offline analysis. Monitor-
ing voltage and current signals for exceeding predefined
thresholds is the major task of the module. When a cer-
tain threshold is violated, all input signals are recorded
for analysis of the CS module.

The CS is the core of the monitoring system. Out
of the recorded voltage signals characteristic features
are extracted. The type of the recorded event is de-
termined by comparison of its extracted features with
previous trained reference data. Afterwards the qual-
ity of the decision is tested. In case of sufficient quality
the decision is accepted, otherwise the event is noted
for manual classification.

The monitoring result module combines trends, his-
tograms of processed steady-state measurements and
an event log for a detailed PQ diagnosis. At that time
those events with low classification quality can be clas-
sified manually by visual inspection. The result may
be adopted by the reference data to enable a higher
quality level in case of similar events.

III. SYSTEM OPERATION

The presented prototype of the PQ monitoring sys-
tem is realized on a conventional PC platform with a
DAQ board. The monitoring software runs under Win-
dows NT in combination with Matlab. The mode of
operations of the modules in figure 1 is described in
detail in the following points.

A. DAQ and Trigger Module

As mentioned in section II the primary tasks of this
module are:

• Interface between power system and CS.
• Detection and recording of PQ variations.
• Measuring steady-state values.
• Data processing for offline modules.

In low-voltage (LV) power systems voltage and cur-
rent signals are directly measured by isolation probes
and clamp-on current probes. In medium-voltage (MV)
systems the voltage signals of local installed voltage
transformers are connected to the isolation probes. The
probe signals are the input of the DAQ board. The
board features 8 differential inputs, 12 bit ADC resolu-
tion and 200 kS/s sampling rate.

Starting a PQ monitoring campaign first basic mon-
itor parameters have to be set. The number and type
of input signals are to be chosen. Next the sampling
rate is set. For PQ event classification usually three
line-to-neutral voltages are selected as input. A maxi-
mal sampling rate of 66 kS/s is possible for three chan-
nel acquisition, but 20 kS/s per channel proved to be
sufficient. Other settings include averaging interval of
steady-state measurements and pre- and post-trigger
recording time. In order to detect PQ variations, the
trigger module monitors four different signal parame-
ters for threshold violations:

• Peak value of voltage and current,
• RMS value of voltage and current,
• relative waveform of voltage,
• harmonic voltages.

Peak and RMS values are verified every sample.
The RMS value is calculated on the basis of a mov-
ing window of a half nominal cycle. The detection of
relative waveform variations works by taking the sum
of an actual voltage sample and its corresponding sam-
ple half cycle before. Under normal conditions the sum
is about 0 V. When the sum exceeds a previous selected
range, the number of violations is counted over a pe-
riod of a half cycle. If this number is higher than a
threshold, the system triggers. In addition it is possi-
ble to monitor harmonics of all channels by calculating
a FFT over an interval of 200 ms. The system triggers,
if an harmonic violates a predefined threshold.

In case of triggering, all signals are recorded. When
the trigger is still active after recording time, new
recordings follow, until the trigger gets inactive. Avoid-
ing memory overflow, the system turns in a mode of
sample recordings at regular intervals after an adjusted
time. The system gets in normal monitoring mode if
the trigger turns inactive.

The recorded events are stored on hard disk and can
be analyzed by the CS.

B. Classification System

The appearance of PQ events of the same type
can be very different. Variations in duration, magni-
tude and phase are self-evident. Even superpositions
of different types PQ events may occur. To classify



such events, a reduction to characteristic features is
inevitable.

As mentioned in section I a methodology is applied
similar to speech recognition [6][7]. The key idea of
the present CS is that the complexity of PQ events can
be sampled into a sequence of basic phenomena. For
this purpose an event model has been developed. This
model is shown in figure 2 by an example event [8].
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Fig. 2. Modules of a PQ monitoring and classification system

The event model consists of four ”event signals”,
three recorded line voltage signals (UL1−3) and the cal-
culated zero-sequence voltage (U0). Then each event
signal is decomposed into small signal intervals, so-
called ”frames”.

The classification procedure is divided into five
steps, which are depicted in figure 3.
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Fig. 3. Modules of a PQ monitoring and classification system

B.1 Event Segmentation

The events signals are decomposed into frames of
fixed length of a nominal cycle. The trigger time de-
termines the starting point of segmentation including
one pre-trigger frame. Then the frames are serialized
and passed to the frame classifier.

B.2 Frame Classification

The frame classifier decides the class of each frame.
As classes basic PQ phenomena are chosen. A frame

class consists of a ”main characteristic” and may have
a few ”attributes”, if existing. The RMS voltage of the
frame determines its main characteristic. Attributes
describe certain waveform phenomena. For instance
the typical incepting voltage waveform of the faulted
line can be expressed as ”sag with oscillating transient
and arcing character” for transient earth faults in MV
power systems. This phenomenon is categorized by the
frame class Uota. Table I shows the selected frame
classes of the frame classifier.

TABLE I

Frame Classes

Main Characteristic
N RMS voltage in acceptable range
O RMS voltage > 1.1 pu
U RMS voltage < 0.9 pu

Attributes
a arcing characteristic
d voltage distortion
it impulsive transient
ot oscillatory transient
r repetitive disturbance

Classification starts with extracting relevant fea-
tures from a single frame by signal processing. These
features are peak and RMS value, THD and distortion
index including inter-harmonics. In addition three fea-
tures expressing the frame’s time-frequency behavior
are calculated by a modified discrete wavelet transform.
These features are combined to a feature vector, which
is the input of the classifier.

The present classification task requires a classifier
with generalization and learning capabilities [9]. That
is why rule-based classification is not suited for the
present application. Statistical classifiers fulfil these
requirements, thus selecting a parallel working Bayes
and ”k-nearest neighbor” (kNN) classifier. This struc-
ture proved efficiency in comparison to fuzzy and ANN
classification techniques [10].

Each classifier of the parallel structure compares
the input feature vector with its reference data, which
originates from simulations and field recordings. That
reference class, which fits best to the input vector de-
termines the class membership of the present frame.
When the two class votes of Bayes and kNN classifier
coincide the decision is accepted, otherwise the classi-
fication failed.

B.3 Confidence Test

In order to allow only a reliable decision, its quality
has to be tested. The strategy is to compare classifi-
cation result and feature vector with previous success-
fully classified frames. Because the classifier techniques
operate in a way of distance calculation, a confidence
function can be calculated on the basis of histograms
of previous classifier results [10]. If the actual result



falls near a point of high accumulation, the confidence
level is high. A decision has to reach a confidence level
of at least 80%, otherwise the whole event is noted for
manual classification

B.4 Event Reconstruction

After successful frame classification, the resulting
frame types are arranged in form of the original signal.
This sequence is denoted ”waveform vector” and forms
a row of the ”waveform matrix”. Figure 4 shows frame
segmentation and classification of a sample event, an
earth fault in a MV power system [8]. The results of
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Fig. 4. Classification of frames and resulting waveform vectors
of a sample PQ event

frame classification are drawn under the plot for each
signal voltage. Afterwards the waveform vectors are
condensed. This means that same consecutive frame
types are reduced to a single instance (in case of event
type ”Od” for signals UL2, UL3, U0). Frames of type
”N” are removed. The condensed waveform vectors are
shown on the right side of the plot.

B.5 Event Identification

The procedure for type identification of the sam-
ple event is illustrated in figure 5. First the signal
types are identified. The waveform vectors a compared
to signal patterns in a look-up table. For example the
waveform vector of line 1 matches with the pattern
”Fault, arcing” by the use of wildcards (”*”). The
waveform vectors of line 2 and 3 can be identified as
”Swell, transient”. The waveform vector of the zero
sequence voltage is only tested for voltage unbalance.
The results of signal identification form the ”signal vec-
tor” and are compared to entries in the event pattern
table. The present sample event would be identified as
shown in the figure. When no matches can be found
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Fig. 5. Modules of a PQ monitoring and classification system

in signal or event pattern table, the event is noted for
manual classification.

The advantage of these look-up tables is their sim-
ple expandability. Like a construction kit, existent pat-
terns can be modified, new signal and event pattern can
be added.

C. Results Module

As mentioned in section II the results of steady-
state measurements and of the event classification sys-
tem are brought together to enable an assessment of
the monitoring campaign. Trend and histogram plots
of RMS voltages, harmonics, THD and voltage unbal-
ance can be generated. But most important is the event
log, where trigger time, magnitude, duration and of
course the type together with its confidence level is
listed. In case of unknown event types, it is possible to
plot the recorded event and classify it manually. De-
pending where the classification failed, in frame clas-
sification or event identification, unknown waveforms
can improve the reference data or new signal and event
patterns can be added to the look-up tables, respec-
tively. A summary of occurred event types concludes
the PQ analysis module.

IV. FIELD TEST

A. Monitoring Location

A field test was carried out at two different low-
voltage power systems of the university campus. Fig-
ure 6 shows the diagram of the campus power system.
An internal 6 kV-power system distributes the electric
energy to several low-voltage systems.

At two different service entrances of low-voltage sys-
tems – locations A and B – the PQ monitoring sys-
tem was installed. The two investigated power sys-
tems supply different loads. The system at location A
supplies two office buildings and a laboratory. Hence
location A is mainly characterized by lighting and com-
puter loads and in addition by a 150 kW induction mo-
tor with power factor correction, which is installed at
the laboratory. The power system at location B sup-
plies experimental set-ups for adjustable speed drives
(ASD).
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Fig. 6. One-line diagram of monitored power system

The three phase-to-neutral voltages were monitored
at the two service entrances over a week period, respec-
tively. Monitoring could not performed simultaneously,
because only one PQ monitoring system was available.

B. Results

B.1 Steady-State Measurements

Figure 7 shows the trend of the steady-state-
measurements recorded at location A. The extrema

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

Sa Su Mo Tu We Th Fr Sa
0

0.01

0.02

0.03

0.04
Voltage Unbalance

time (d)

ab
so

lu
te

ab
so

lu
te

V
ol

ta
ge

 (
pu

)

THD

RMS Voltage

Fig. 7. Trends at location A, 09/09/2000 - 09/16/2000

of RMS voltage and THD can be seen. The lower plot
shows the trend of voltage unbalance. During a week
with thunderstorms, events in form of voltage sags are
obvious in the RMS voltage trend. Effects of theses
events are visible in THD and voltage unbalance plot.
According to standard EN50160 [1], 95% of the steady-
state measurement are to be in acceptable range of
RMS voltage (0.9 − 1.1 pu), THD (< 8%) and volt-
age unbalance (< 2%). Even with those voltage sags
compliance to EN50160 is kept.

In comparison to location A the trends measured
at location B, depicted in figure 8, show no signif-
icant events. The RMS voltage shows a lower level,
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Fig. 8. Trends at location B, 11/04/2000 - 11/11/2000

because of the transformers tap changer remained on
Un = 380 V. Also THD has a lower level, which can
be mainly traced back to missing computer loads and
fluorescent lights. In addition with a low voltage un-
balance trend the compliance of the trend to EN50160
is proved.

B.2 Event Analysis

Table II shows the summary of the classification of
the events recorded at location A.

TABLE II

Events at location A

Event type #
Voltage sag, balanced 3
Voltage sag, unbalanced 1
Capacitor energizing 47
unknown 9

total: 60

Totally 60 events were recorded. The majority was
classified as capacitor energizing, that can be most
probably traced back to the power factor correction
of the induction motor. Four voltage sags are identi-
fied. Knowing the transformer type, interpretations of
the events can be drawn. Three were balanced sags,
in spite of unequal phase-to-neutral voltages. Thus
they can be assumed as result of remote faults in trans-
mission systems. The unbalanced sag was an internal
event. Nine events kept unknown, because of unsuffi-
cient confidence level after frame classification. Visual
inspection of those unknown events identified them as
slight waveform distortions.

At location B totally 23 events were recorded. After
automated classification all events remained unknown
after frame classification. By visual inspection the un-
known events were identified as typical events of ASD
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starting. A sample frame is depicted in figure 9. The
solution was to introduce a new frame class ”Nasd” by
adopting an event frame to the reference data. Table
III shows the results after reclassification the events.

TABLE III

Events at location B

Event type #
ASD starting 22
unknown 1

total: 23

The single unknown event showed a slight waveform
distortion.

V. CONCLUSIONS

This paper presented a power quality monitoring
system, which features an automated event classifica-
tion. Main goal of the system is robust and reliable
classification of power quality events.

The system allows modifications and extensions of its
knowledge data by a type of construction kit for power
quality events. After description of structure and op-
eration of the system prototype, results of a field test
were presented.

The field test proved efficency of the system and
made the advantage of the open classification system
obvious. By introducing a new frame type nearly all
events could be classified successfully. So it is possi-
ble to build a reference data of a specific power sys-
tem. This allows a simple identification of new un-
known event types in a set of recorded events.

Future work will include the extension of the event
reference data and the signal and event pattern tables.
It is also intended to gain experience by system tests
in medium-voltage power systems.
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