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Abstract – The conventional transformer model 
separates the magnetizing impedance from the leakage 
inductances. One of the leakage inductances becomes 
negative for some three-winding transformers and may 
result in an unstable time domain circuit model. This 
paper shows how to avoid this problem by modifying 
the transformer model. Various alternatives are 
presented and the selection among them depends on the 
geometrical data available for the transformer. It is for 
transformers with concentric cylindrical windings 
better to connect the magnetizing branch to the 
terminal of the inner winding than to the internal node 
in the conventional model. The location of the 
magnetizing branch may have a significant influence 
when the transformer is in heavy saturation. 
 
Keywords: Transformer modeling, negative leakage 
inductance, unstable circuit, physically based model, 
EMTP. 
 

I.  INTRODUCTION 
 
 Fig. 1 shows the Saturable Transformer Component in 
EMTP [1]. This model corresponds to the conventional 
transformer model and its main characteristic compared to 
other models is that it separates the magnetizing 
impedance from the short-circuit (leakage) inductances. 
The leakage inductances are normally determined from 
measurements. Only one such measurement can be 
performed for a two-winding transformer and it is common 
practice to assume the two leakage inductances to the equal 
(in p.u.). Three independent measurements can be made for 
a three-winding transformer. The three leakage inductances 
are thus determined uniquely. For transformers with four 
or more windings the number of independent 
measurements is higher than the number of inductances 
and the model (Fig. 1) can in general not reproduce 
correctly all the measured values. 
 The transformer model in Fig. 1 includes winding 
resistances and ideal transformers. The winding resistances 
are neglected in this paper, but they can easily be included 
as a part of the network connected to the transformer’s 
terminals. The ideal transformers are omitted as well. This 
implies that all impedances are referred to the same voltage 
level. 
 It is well known that one of the leakage inductances in 
Fig. 1 normally becomes negative for three-winding trans- 
formers. Ref. [2] shows that this negative value may result 
in an unstable circuit that gives completely unrealistic time 
domain responses. One example of such a case is found 

 
 
 

Fig. 1. Saturable Transformer Component. 
 
when an ideal voltage source is connected to the winding 
with the negative inductance (e.g. L2) and the other 
windings are open. Assuming a constant magnetizing 
inductance Lm gives an eigenvalue equal to 
 
 ( ) ( )m2m2m LL/LLR- ⋅+=λ  ( 1 ) 
 
This eigenvalue becomes positive and the numerical value 
is typically in the range 108 s-1. This implies that a part of a 
transient response shows an exponential increase with a 
time constant in the range 10-8 s. Ref. [2] shows some 
examples of unstable responses obtained with a resistive 
load connected to the winding with the negative 
inductance. 

Ref. [2] shows that the problem due to the unstable 
circuit can be avoided by representing the magnetizing 
losses by resistances connected to the transformer’s 
terminals or by introducing a series inductance in the 
magnetizing branch. Those modifications were however 
not derived from physical conditions of the transformer. 
This is the main purpose of this paper. 
 

II.  PASSIVE NETWORK, INDUCTANCES WITH 
MUTUAL COUPLING 

 
A passive network is a network that does not generate 

any power. It does therefore not cause any unstable 
condition. The transformer is a passive component and 
must therefore correspond to a passive network. One way 
of achieving this is to restrict the model to non-negative 
RLC components only. This approach is however not a 
good solution since it will not agree with the measured 
short-circuit inductances when they result in a negative 
value for one of the leakage inductances in Fig. 1. 

A negative component may on the other hand be a part 
of a passive network. A positive resistance may for 
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instance be modeled as a series connection of a 
negative resistance and a positive one. 

Fig. 2 shows an equivalent for two inductances with 
mutual coupling. 

The inductances correspond to a passive network 
when La and Lb are positive and the coupling factor is 
less or equal to one, i.e.: 
 
 ba

2 LLM ⋅≤  ( 2 ) 
 
It is worth noting that Lb – M may become negative as 
long as condition (2) is fulfilled.  
(Numerical example: bba L3.1MandL2L ⋅==  (coupling 
factor 0.92) gives Lb – M =  - 0.3 Lb). 
 
III.  TRANSFORMER MODEL DERIVED FROM A 

PHYSICAL BASIS 
 
 Fig. 3 shows a cross section of the transformer that 
is assumed to have three concentric cylindrical 
windings. The core is assumed cylindrical as well. All 
windings are assumed to have one turn only. (The actual 
number can be accounted for by ideal transformers).  
 A model for the transformer will now be derived 
assuming that the magnetic flux density outside the core 
is vertical (i.e. end effects are neglected). 
 The flux linkages of the windings can be expressed 
as a contribution from the core (Ψm) plus a linear 
contribution due to the field outside the core. 
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Fig. 2. Inductances with mutual coupling.  
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Fig. 3. Transformer with three cylindrical windings. 
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The elements in the inductance matrix (L) can be 

determined column by column by applying a current in 
one winding and determining the flux linkages with 
Ψm = 0. This last condition is achieved by introducing 
a fictitious winding (magnetizing winding) with zero 
thickness at the surface of the core and applying a 
current equal to the one in the first winding but with 
opposite sign.  

The leakage inductance formula in the appendix  
can be used to determine the diagonal elements in the 
inductance matrix. The formula assumes homogenous 
flux density between the two windings involved (i.e. in 
the leakage channel) and it is possible to determine the 
off-diagonal elements in the inductance matrix 
utilizing this assumption. The matrix becomes: 
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where 

 
h
Dk m

0
⋅πµ=  ( 5 ) 

 
Dm is the mean diameter of the windings. 
 

The flux in the core must be produced by a magnetizing 
current im. This current can be considered to be supplied by 
the fictitious magnetizing winding. The total current in this 
winding is thus im – i1 – i2 – i3. However, this current must 
be zero, which implies that im is the sum of the currents in 
the other windings. The relation between Ψm and im is non-
linear and is normally represented by a parallel connection 
of a resistance and a non-linear inductance. 
 Fig. 4 shows an equivalent circuit that can be derived 
from (3) and (4) and the magnetizing impedance. The 
decoupling technique in Fig. 2 has been applied as well. 
 The dotted lines show how the equivalent can be 
extended to take a fourth winding into account. 
 It should be noted that the following minimum values 
applies (see Fig. 3): 
 
 2/da 1min1 =  ( 6 ) 

 ( ) 2/dda 21min2 +=  ( 7 ) 

 ( ) 2/dda 32min3 +=  ( 8 ) 
 
 Fig. 4 is based on a geometrical model but several 
simplifications have been introduced and discrepancies 
must be expected between the model and a real 
transformer. It is however important to note that Fig. 4 
represents a passive network. This can be verified from (4) 
by considering the coupling factor for any pair of 
windings. 
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Fig. 4. Transformer equivalent based on (3) and (4). 
 
 

IV. ADAPTING TRANSFORMER MODEL TO 
MEASURED DATA 

 
 The magnetizing current has normally no 
influence on the short-circuit impedances. Ignoring 
this current in Figs. 1 and 4 shows that the two 
models are equivalent when: 
 
 ( )6/dakL 121 −=  ( 9 ) 

 6/dkL 22 −=  ( 10 ) 

 ( )6/dakL 333 −=  ( 11 ) 

 
 Fig. 1 is equivalent to Fig. 4 under these 
conditions if the inductance ka1 is ignored and the 
magnetizing branch in Fig. 4 is connected to node A2 
instead of node A1. 
 Rm and Lm in Fig. 4 can be adjusted in such a way 
that the two magnetizing branches give the same 
impedance at steady state nominal voltage. The 
discrepancy between the two branches is then 
insignificant when the transformer is not saturated. 
Some discrepancy occurs during saturation but it is 
most probably insignificant compared to the error that 
is introduced by representing the magnetizing losses 
by a linear resistance. 
 The main difference between the two models is 
the influence on the magnetizing current from the 
voltage drop across the inductance k ⋅ a2. This 
influence may be significant when the transformer is 
saturated. 
 The inductance in Fig. 4 corresponding to L1 can 
be decomposed into two components: 
 
 6/dkL 111 −=  ( 12 ) 

 

and 

 212 akL ⋅=  ( 13 ) 
 
Eq. (7) shows that L12 is at least 11L3 ⋅ . L12 becomes 
at least 11L6 ⋅  if one assumes that d1 is 
approximately equal to d2. This implies that it is 
better to connect the magnetizing branch to terminal 
1 than to the node A2. Ref. [2] shows that the 
transformer model in Fig. 1 becomes a passive one 
when the magnetizing branch is connected to one of 
the terminals of the model or contains a sufficiently 
great series inductance.  
 The transformer model in Fig. 4 is based on 
physical considerations and it is therefore assumed to 
be a better basis for modeling the transformer than 
Fig. 1. The model should however agree with the 
short-circuit measurements. This implies that the 
leakage inductances L1 , L2 and L3  are to be 
determined from measurements and not from 
geometrical data. Those data could be used to divide 
L1 into the two parts L11 and L12. The geometrical 
model gives  
 
 ( )211211 a6/dL/L −=  ( 14 ) 
 
This ratio is an estimate and it should be used only if 
the relative values of L1 , L2 and L3 from the 
measurements show a reasonable agreement with 
values calculated from the geometrical data using 
(9) – (11). If no reasonable agreement is obtained, it 
is recommended to connect the magnetizing branch to 
the terminal of the inner winding. 
 Fig. 5 shows the various models that have been 
described so far (Note that the values of Rm and Lm 
are not the same for all models). 
 L1 , L2 and L3 are determined from measurements 
and the numbering of the windings is assumed done 
in such a way that L1 and L3 are greater than (or 
equal) L2. 
 The choice among the models depends on the 
value of  L2 and the additional geometrical data that 
are available.  
Table 1 shows the proposed selection. 
 
 

Table 1  Selection of transformer model 
 

Case 
 
                  Description 

Select 
transformer 
model 

I L2 > 0  A 
II L2 < 0  Winding 2 is not the center 

winding 
B or C 

III L2 < 0 Position of the windings 
unknown 

B or C 

IV L2 < 0 Position of the windings 
known and winding 2 is the 
center winding 

D (or E) 

V L2 < 0 Distances known and relative 
values of L1 , L2 and L3 are in  
reasonable agreement with 
the geometrical data 

E 
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Fig. 5. Transformer models. 
 
 
 

Comments to the table: 
 
 Case I: L2 does not agree with Fig. 4. One possible 
reason is that the windings are not arranged as three 
concentric windings. The conventional model 
corresponds in this case to a passive network since all 
inductances are non-negative. 
 Case II: Fig. 4 shows that the negative inductance 
corresponds to the center winding, but the measured 
values give another result. That means that there is a 
fundamental disagreement between the measured 
values and the model based on geometrical data. Fig. 5 
B or Fig. 5 C should then be applied since they 
correspond to passive networks that are derived 
without taking geometrical data into account. The 
series inductance in Fig. 5 B should be selected in such 
a way that it is greater than the absolute value of the 
parallel connection of L2 and the minor one of L1 and 
L3 [2]. Fig. 5 B deviates in general less from Fig. 5 A 
in the frequency domain than Fig. 5 C. The difference 
is however not very significant and Fig. 5 C is often 
selected because it is easier to implement in existing 
programs that includes the transformer model in 
Fig. 5 A. 
 Case III: The negative inductance L2 may or may 
not correspond to the center winding. A cautious 
approach is therefore to use the same model as in case 
II. It might however be worth to consider to apply the 
model in Fig. 5 D if it is reasonable to assume that L2 
corresponds to the center winding and L1 ≈ L3. 
 Case IV: Fig. 5 D is the natural choice in this case. 
However, Fig. 5 E could be used if L2 is used to 
estimate L11. Eqs. (10) and (12) give: 
 
 21211 d/dLL ⋅=  ( 15 )
 
 The ratio d1 / d2 can be estimated by assuming the 
same nominal current density in the windings and 
 
 

making some correction for the increased amount of 
insulation when the nominal voltage increases. 
 
 

V. MAGNETIZING IMPEDANCE 
 
 The magnetizing impedance is very high compared 
to the short-circuit impedances when the transformer is 
not saturated. There is in this case no significant 
deviation among the various alternatives in Fig. 5 as 
long as they correspond to a passive network. 
 The situation may be quite different when 
saturation occurs. The magnetizing impedance in 
heavy saturation is of the same order of magnitude as 
the short-circuit impedances and the alternatives in 
Fig. 5 are not equivalent any more.  
 Ref. [3] (section 6.6.2) shows (in Table 6.2) a 
comparison between measurements and computations 
with the magnetizing branch connected as in Fig. 5 A 
or connected to the terminal of the inner winding. The 
transformer was in heavy saturation and was energized 
from one winding with the other windings open. The 
voltage was measured at all terminals and all windings 
were energized (one by one). Connecting the magnet-
izing branch to the terminal of the inner winding in the 
computation model gave differences less than + 5%. 
Differences in the range 60% (one case even 128%) 
were obtained when connecting the branch as in 
Fig. 5 A. Ref. [3] concludes that the Saturable 
Transformer Component (in EMTP) could become 
more useful if the code were changed so that the 
magnetizing branch could be connected to any 
terminal. An EMTP-user can however overcome this 
obstacle by ignoring the magnetizing current in the 
Saturable Transformer Component and connecting a 
resistance and a non-linear inductance to the actual 
terminal. 
 The magnetizing impedance is normally determined  
by measurements, at least partly. The impedance in  
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Fig. 5 corresponding to the measurement may include 
a leakage inductance in series with the magnetizing 
branch. It is important to take this inductance into 
account when determining the magnetizing 
impedance to be used in the model. 
 The magnetizing branch includes a parallel 
resistance Rm and Fig. 4 shows that this resistance 
should not be in parallel with k ⋅ a1 that is a part of 
the magnetizing inductance. There is however no 
need distinguish between the two alternatives except 
when one of them results in a transformer model 
that does not correspond to a passive network. 
 
 

VI. TWO-WINDING TRANSFORMERS 
 
 Section V showed that the location of the 
magnetizing impedance in the model might have a 
great influence even when there is no stability 
problem. It may therefore be of some interest to 
analyze a two-winding transformer. Fig. 6 a shows 
the model obtained from Fig. 4 for a two-winding 
transformer. The model normally applied is shown in 
Fig. 6 b. 
 The negative inductance between nodes 1 and A1 
in Fig. 6 a can be calculated if the geometrical data 
are known. The inductance between nodes A1 and 2 
should then be selected to give a leakage inductance 
that corresponds to the measured value. If it is not 
possible to determine the value of the negative 
inductance between nodes 1 and A1, then the best 
estimate is zero, i.e. to connect the magnetizing 
branch to the node corresponding to the inner 
winding (Fig. 6 c). This choice is much better than 
applying the conventional model (Fig. 6 b). The 
conventional model should therefore be used only 
when it is impossible to identify the inner winding. 
 

VII. SOPHISTICATED FIVE-LEGGED 
TRANSFORMER MODEL 

 
Ref. [4] presents a topologically correct model for a 
five leg three-phase transformer with two windings per 
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Fig. 6. Two-winding transformer models. 

phase. Fig. 7 corresponds to Fig. 2 in [4] and shows a 
cross section of core and winding assembly as well as 
the derived magnetic circuit. The modeling of the 
leakage inductances is not discussed in [4] and it is 
therefore analyzed in this paper. 
 The current sources IH1 and IX1 in Fig. 7 correspond 
to the current in phase 1 of the high voltage and the 
low voltage winding respectively. The low voltage 
winding is the inner winding. It is found from the 
figure that LH1X1 equals the leakage inductance 
between the two windings. The inductance LX1C 
represents the leakage flux between the inner winding 
and the core. Comparing Figs. 6c and 7 it is found that 
the leakage inductances LH1X1 and LX1C are connected 
in the same way as L (corresponding to LH1X1) and 
k ⋅ a1 (corresponding to LX1C). The same model is used 
for the leakage flux of all phases in Fig. 7. The model 
in [4] corresponds therefore to Fig. 6 c and not to the 
conventional model (Fig. 6 b). Modeling the linkage 
fluxes as in Fig. 6 a may give a more accurate model 
provided that the relevant geometrical data are known. 
 

VIII. CONCLUSIONS 
 
One of the leakage inductances in the conventional 
transformer model becomes normally negative for 
 

 
 

Fig. 7. Model presented in [4] (Fig. 2). 
Top: Cross section of core and winding assembly. Leakage flux 

tubes are labeled. Center: Corresponding lumped-parameter 
magnetic circuit. Bottom: Duality derived equivalent circuit. 
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three-winding transformers and could cause an 
unstable time domain circuit model. This paper shows 
how to avoid this problem. 
 Alternative modifications of the original model are 
proposed and the choice should be made depending on 
geometrical data available for the actual transformer. 
The main deviation among the various alternatives is 
the location of the magnetizing branch. This location 
does not have any significant influence except when 
the transformer is saturated. The influence may be very 
significant in heavy saturation and it is in general 
better to connect the magnetizing branch to the 
terminal of the inner winding than to the internal node 
in the conventional model.  
 The leakage inductances in the two-winding version 
of the conventional transformer model are normally 
assumed to be equal. A more accurate model is 
obtained for transformers with concentric windings if 
the magnetizing branch is connected to the terminal of 
the inner winding. 
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APPENDIX.  LEAKAGE INDUCTANCE FORMULA 
 
 Ref. [A1] presents in (6a) a formula for the short-
circuit reactance between two concentric windings. 
The formula is based on the flux density variation 
shown in Fig. A1. 
 The leakage inductance corresponding to the 
windings with thickness d2 and d3 in Fig. A1 can be 
found from (6a) [A1]: (Each winding is here assumed 
to have one turn). 
 
 
 
 
 
 

Φs

δ1 δ3
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a

d3
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Fig. A1. Leakage flux density variation, from Fig. 16 [A1]. 
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where µ0 is permeability of vacuum, D1 is the mean 
diameter and 1

�  is the high (h) of the windings plus a 

contribution ( ) 3dd 322 +δ+ . Ignoring this last 

contribution and substituting the distance 2δ  by a (see 
Fig. A1) gives: 
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This formula ignores the variation in the circumference 
as the distance from the core increases. One version of 
the formula was presented by Kapp in 1898 [A2]. 
Experience has shown that (A1) is reasonably correct. 
Ref. [A3] presents same comparisons between the 
formula and measurements and the deviation is 
typically in the range + 10%. 
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