Q-V Characteristics Simulation through Artificial Neural Network
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Abstract — The charge-voltage (Q-V) curves have been used
to characterize the Corona Phenomena in overhead
conductors and conductor bundles. Several approaches have
been proposed in recent years to incorporate the phenomena
in EMT calculations, and most of these are based on
approXimations of the Q-V curves.

A structure composed by two Artificial Neural Networks
(ANN), each having two layers, was developed to simulate
the Q-V characteristics. The training set presented to the
network had data of sixteen experimental Q-V curves of one
single conductor, consisting of four veltage conditions
(lightning and switching impulses) at four voltage levels.

Keywords: Transient Analysis, Corona Effect, Neural
Networks Application.

1. INTRODUCTION

It is well known that the attenuation and distortion
produced by the corona phenomena on surges propagating
along overhead transmission lines can be very substantial.
Since these effects can contribuie to reduce insulation
levels at the substations, there is considerable interest in

incorporating corona rmodels in Electromagnetic
Transients Programs.
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Fig. 1. Overvoltage attenuation due to the Corona Effect

Extensive work has been done to develop realistic
corona models [6 - 11], and to interface such models with
EMTP type programs.

Most corona models are based on the charge-voltage
(Q-V) conductor characteristics, which are determined
experimentally. The first attempts to represent the Q-V
characteristics for the calculation of surge propagation
were based on analog models of the phenomena [1]. A
fairly crude piece-wise linear approximation of the Q-V
curve can be obtained using diodes, capacitors and
resistors. Amnalog circuits of different topologies were
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proposed by several authors to reproduce the main aspects
of the phenomena. It was later established that, for a
given single conductor or conductor bundle under steady
atmospheric conditions, the shape of the Q-V curves are
considerably affected by the time to crest and by the crest
value of the applied surge {2]. Thus a ‘wide-band’ analog
corona model has been proposed to reproduce such
behaviour [10].
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Fig. 2. Typical Q-V curve

The main drawback of the analog models arnses from
the inherent difficulty associated with their application in
multi-phase systems. Also, {o approximate the distributed
nature of corona, the line has to be divided into short
sections, and the analog corona circuit has to be connected
at cach intersection.

Careful consideration of the nature of the curves
obtained by Maruvada et al [2] led to the proposal of a set
of linear differential equations which had been apphlied in
studies of visco-elasticity phenomena. The analytical
equations proposed by Sulicin and Suliciu {4] have been
studied at IREQ [7] and have also been adopted for the
development of an efficient recursive scheme to simulate
surge propagation on overhead single and multi-phase
transmission lines [9, 11]. Suliciu’s Model is based on
analytical equations, the coefficients of which have to be
estimated empirically, using a trial and error process.

Artificial Neural Networks {ANN’s) are particularly
suitable for the representation of non-linear systems and
have been applied successfully to several difficnlt function
approximation problems [13]. It was thus decided to
examine their performance for the approximdtion of Q-V
characteristics. The ultimate aim of the investigation
would be to develop ANN’s that would be capable to
efficiently obtain the parameters of Suliciu’s model from a
set of Q-V curves of a given conductor.
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It was decided to stari the project by developing ANN
structures that would reproduce the Q-V curves measured
at IREQ [2]. The curves were obtained when the
conductor was subjected to differemt voltage surge
conditions, ranging from lightning type surges, and for
several crest values.

The progress obtained in this work will be reported in
this paper.

II. ARTIFICIAL NEURAL NETWORK DEVELOPMENT

Maruvada et al {2] presented measurements of Q-V
characteristics, obtained throungh the application of surges
of different shapes and magnitudes, on conducters in an
experimental cage arrangement. Sixteen of these Q-V
curves, measured on a single 1.2 diameter conductor,
using positive polarity surges and under fair weather
conditions, have been selected to form the ANN training
set.

The set of characteristics shown in Figures 3 to 6
correspond to four crest values of the applied surge, 280
kV, 340 kV, 390 kV and 450 kV. Figures 3 and 4 are
representative of switching impulses (260/2700 ps and
7572500 ps), whereas Figures 5 and 6 were measured
using lightning type impulses (15/1000 us and 2.5/60 ps).
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Fig. 4. 75/2500 ps Q-V Characteristic
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Fig. 5. 15/1000 ps Q-V Characteristic
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Fig. 6. 2.5/60 ps Q-V Characteristic

The set of four characteristics in each Figure can be
defined by three parameters:

- Vi
-t
- 4

— maximum overvoltage
—» rise time
— tail time

Therefore, an ANN that uses these three parameters,
should be able to produce, on its output, the correct charge
value associated with a given voltage input.

A structure composed by two Artificial Neural
Networks was developed to simulate the Q-V
characteristics. Theoreticaily the use of two ANNs is not
necessary, but this simplifies the ANN task because as
shown in Fig. 2, Region A is much more complex than
Region B. The use of only one ANN has been tested, but
its training has evidenced that this is not the best choice.
Thus one ANN is used for Region A, and the other is
used for Region B.

A very simple test shown in Fig, 7 can be used to
determine which ANN should be activated at any given
time t: if V(t}>V(t-1) the voltage is on Region A,

otherwise it is on Region B.

IPST '99 - International Conference on Power Systems Transients ¢ June 2024, 1999, Budapest — Hungary

440



vy, V(1)

Reglon B
ANN

Fig. 7. Test for decision between Region A and Region B

Theoretically a feedforward neural network having two
neuron layers could be trained to approximate any
practical function arbitrarily well [12]. Thus the
architecture adopted for the two ANNs is shown in Fig. 8
and consists of feedforward networks with two layers. The
first network uses the hyperbolic tangent for the
activation function, and the second uses linear activation.
All neurons use bias synapses. The ANNs have four
inputs, namely Vi, TR, t; and V(t), and one output Q(t).
The first layer has fifty neurons, and the second layer has
one neuron. The choice of the number of neurons to be
used in the first layer has been decided after a series of
tests, in which ten, twenty, thirty and fifty neurons were
used. Perhaps fifty neurons are not the better choice, but
this number produces very good results as will be seen
from the resuits.

MATLABT™ was chosen to train and test the ANN’s,
as it provides heavy-duty numeric computation, advanced
graphics and visualization, a high-level programming
language based on vectors, arrays and matrices, and a
useful collection of application functions, such as the
Neural Network Toolbox {12].

Fig. 8. Network Architecture

The ANNs have been trained by backpropagation,
using momentum and adaptive learning rate technique
[12]. The backpropagation learning rules are used to
adjust the synaptic weights so as to minimize the mean
square error of the network output. In the present case
better solutions were found when the — momentum
technique was used; the training time was shortened by
the use of an adaptive learning rate for each synapse.

The Nguyen-Widrow method has been used to find the
initial conditions of the first layer weights and biases, and

small random values have been used for the second layer.
The inputs and the output were normatized to values in a
range between -0.9 and 0.9; this action is important to
warrant a fast convergence of the training process. -

A Mean Square Error- MSE- value of 5x10™ was the
criterion used to stop the training operation,

The error criterion of the Region A ANN (see Fig. 2)
has been reached after approximately 10° epochs (steps) of
training, whereas the Region B ANN has been trained
after approximately 10° epochs. This difference is easily
explained by the differences in the coroma charge
behaviour in the Regions A and B.

Even though the training can be a slow process, the
use of the trained ANN is very simple and practically
immediate.

III. RESULTS

Figures 9 to 24 show the comparison between the
experimental Q-V characteristics (solid lines) and their
respective ANN simulations (dashed lines). It is
important to mention that only one neural structure was
able to simulate, with a good degree of precision, all the
proposed sixteen curves, covering overvoltages from
switching to lightning impulse shapes.

Although not tested (because no experimental data was
available) the ANNs are supposed to generalize to other
values of maximum overvoltage and rise and tail time in
the range covered by the training process.
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Fig. 10, 260/2700 ps - 340 KV
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Fig. 18. 15/1000 ps - 340 kV
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IV. CoNCLUSIONS

The first conclusion of this work is the evidence that
the adopted ANN architecture is capable to reproduce the
Q-V characteristics, for lightning and switching impulses,
with a very good degree of accuracy, as long as two
ANNs are used, one for increasing and the other for
decreasing voltage surges. Once the two ANNs are
trained, they are capable of responding cormrectly to
different overvoltages and pulse shapes.

Two applications can be envisaged to represent corona
phenomena using the trained ANNs in Electromagnetic
Transients calculations.

An almost immediate application could consist of
using the ANNs to model the corona “nonlinear branches”
distributed along the transmission line divided in sections
[8], [9]. This approach will require a simple routine to
interface the ANNs with the EMTP using the
Compensation Method. This routine would use the ANNs
output to compute the corona current through the
nonlinear branches at every time step.

A second application could be the training of ANNs
to obtain the coefficients that define the equations of the
dynamic model proposed by Suliciu and Suliciu [7). This
application would replace the cumbersome trial and error
process that has to be adopted to determine the
coefficients.
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Work using both the above approaches is in progress [13] S. Haykin, Neural Networks - A Comprehensive
and will be reported in the future. Foundation, second edition, Prentice Hall, New
Jersey, USA, 1999.
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