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Abstract - This paper presents a methodology to obtain 2. PROBLEM FORMULATION

a dynamic model of power system networks through
the use of an augmented state-space equation, Both
lumped and distributed parameters models can be used
to represent electric network components. The
dynamic model of a linear network of any topology and
dimension can be easily obtained and several linear
systems techniques can be efficiently applied due to the
sparsity of the matrices. This methodology can be used
to obtain reduced order equivalent models or to
perform harmonic studies.
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1. INTRODUCTION

Linear systems techniques, such as frequency
response, eigenvalue/eigenvector analysis, sensitivities,
transfer function residues, etc., have been successfully
applied 1o the analysis of linearized electro-mechanical
stability problems of power systems [1, 2]. These
techniques are based on a state-space model and can be
readily applicd to the analysis of linear aspects of
electromagnetic transient phenomena, such as harmonic
resonances or reduced order equivalent systems.

The state variables definition for an electric
network is not a trivial task. The choice of the currents
through inductors and voltages across capacitors is
straightforward, but does not assure a minimum set of
linear independent variables, which is the necessary
condition to form a state-space description of a dynamic
system [3].

A previous paper introduced the use of an
augmented set of equations to mnodel single-phase
networks composed of lumped parameters (RLC) branches
and distributed, frequency dependent parameters,
transmission lines {4]. Reduced order equivalents were
then derived applying the dominant pole concept [1, 2].
The technique is expanded in this paper to three-phase
systems including distributed parameter transmission line
models, with or without frequency-dependent parametcers.

The time and frequency responses obtained through
the use of the proposed methodology are then compared
with those obtained with EMTP simulations.

Kirchoff's voltage and current laws are, essentially,
linear relationships among variables. These topological
restrictions may pose a problem to the definition of the
state variables of a practical electric network [3]. One
simple way to overcome this problem is to adopl a
generalized state-space model, the descriptor system [5],
written as

Tx=Ax+Bu

D
y=Cx+Du (

where the matrix T is singular.

Descriptor systems allow the simultaneous use of
both differential and algebraic equations and this will be
used to explicitly include the Kirchoff's current law,
written for each node of the network, in the model. Fig. 1
shows the general structure of the descriptor system
proposed by the authors [4] to model electric networks.
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Figure 1 - Electric Network Descriptor System Structure

The vector x is the stale vector and v is the vector
of nodal voltages. Each network component will be
represented by a set of differential and algebraic equations
written as

Tx, =A x +L,v )
and the currents injected in its terminal nodes are written
as

I =Mx +Nyv 3

The current injections in all nodes are equal zero,
which is represented in the second set of equations shown
in Fig. 1.

2.1. Single-Phase RLC Branch

The basic lumped parameter element used to model
electric networks is the RLC branch shown in Fig. 2. This
branch is modeled by the following equations:

/.
K~I{, =RI‘3.+L——+VC
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Figure 2 — Lumped RLC single-phase branch

Equations (4) and (5) can be written together in the
form shown in equation (2) as

A I R ot

and the current injections on nodes & and f are given by

I A

These equations also apply when the resistance or
the inductance are neglected. On the other hand, when
there is no capacitance in the branch, equation {5) should
be replaced by Vo = 0 and equation {7) modified
accordingly:

R A e A

2.2, Transformer

The transformer is represented, in this paper, by a
linear model based on single-phase units. Fig. 3 shows the
equivalent circuit of the single-phase model.

Figure 3 — Equivalent Circuit of the Transformer Model

The following differential equations apply to this
model:

df
L!_'L+R111 =VAHI/B-P:

dt
dr,
LEI+RZIZ=i'/::—VD—V2 (10)
dl
L —==7
dt
and the ideal transformer relations on voltages and
currents can be expressed as algebraic equations:
V
V, — -2y = (11
ool
A~
I =1 —-—+2=] =0 (12)

R

m moml

These equations can be written in the matrix form
shown in equation (2) where

[, 0 0 0 0
0 L, 0 0 0
"T=({0 0 L 0 0 (13)
0 0 0 0 0
(0 0 0 0 0]
[-R 0 0 -1 0 ]
0 -R, 0 0 -1
A =] 0 0 1 0 (14)
0 0 o -1 vV, V.
1 v, V.., -1 =R 0
1 -1 0 0]
0 0 1 -1
L,=|0 0 0 0 (15)
0 0 0 0
0 6 0 0

with the state vector defined as x; = [/, /> I, V/; IV3]' and the
terminal voltages v = [V, Vg Ve V'

The injected currents are given by

[[
Tl [+#1 0 00 o), | [o 0o 0 o]
It |-t o oo of, | |oooof¥~
= s | (16
I, O+10001“+0000VC()
I 0 -1 00 of"] looo oy
D [/1 o
2.3. Three-Phase RLC Branch
The three-phase RLC 1model allows the

representation of coupling effects that exist in three-phase
systems. Fig. 4 shows a schematic diagram of this model.
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Figure 4 — Three-Phase RLC Lumped Parameter Branch

The following matrix equations are used in this
model: '

Ve -vS =Ri+L—i Qan
dt
d
i, = C—v; +i (18)
dt
d
i =C—vi i (19)
4 dt J
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where i=[; I I; ' is the vector of the currents through the
inductive branches, v,° and ij are the vectors of nodal
voltages across the capacitive branches at terminals £ and
j. respectively. The vectors i and ij are the injected
currents at terminals k and j, respectively.

These equations can also be written in the needed
matrix form previously outlined in equation (2):

'Lioio‘o';_o1 [ i ]
LR RELELS N B
0:Ci010;0 v,
S PR
0i0iCloioi—lvi|=
R e ahe Bt Sl e 1
0:0:0:0:0| |j
Lo,oio.o'o_ i
T 0)
RITI-Ii0}0
-Ii0oio0oirio0
=1 T i0i0 0]
0 fL:i0 100
Lo {01 io0io]

Note that the vectors vi~ and v are equal to the
nodal voltages vectors v, and v;, and these algebraic
relations are clearly expressed in the 4" and 5™ rows of
equation {20).

The current injections at the terminal nodes are
written as

c
i 0’0‘0‘1‘0---5'- 0i0]fv
| =] e VS | e |5 21)
i 00001-_---- 0lo]lv,

2.4. Transmission Line

—a

The distributed parameter transmission line model
is based on the modal decomposition of the equations and
each propagation mode can be modeled by the equivalent
circuit shown in Fig. 5 [6, 7].

The following equations are applied to this
equivalent circuit:

V()= B,(s) + Z.(s)1,(s)
V,(8) = B,(5) + Z(),(s)
B,(s)= 4NV, () + Z. ()1 (9)]
B(s) = 4,6V, () + Z.()1, ()]

I(s) Im(S}

— —
20 I p Z,(9)
Vi(s) Vuls)
J B

Figure 5 —Transmission Linc Modal Equivalent Circuit

(22)

(23)

This equivalent circuit can be represented by the
control system block diagram [8], as shown in Fig. 6.

The frequency-dependent transmission line model
proposed in [7] and implemented in the ATP program as
the JMARTI setup {[9] wuses a constant modal
transformation matrix and the characteristic impedance
Zo(5) is represented by a rational function approximation
given by

Z (s)= R+E

=1 § ‘lz,

24

where Az is a real pole and Ry is the transfer function
residue associated with Az;. The terin Ry is a non-zero real
constant and is characteristic of a proper transfer function,
i. e., a transfer function with the same number of poles
and zeros.

Fuis}

209 P

Figure 6 — Transmission Line Modal Block Diagram

The weighting function 4,(s) is represented by a
rational transfer function approximation multiplied by the
Laplace transform of the ideal time delay T

A(s)zeP(s) = e’"i Ray

g1 7

(25)
4

To obtain a state-space realization of the block
diagram shown in Fig. 6, it is necessary to usc a rational
function approximation of the time delay. This is done by
the Padé approximation [8] given by

(~fs) (=79
- 31
2475+ ( ) (”)
2! 3!
The modal values shown in Fig. 5 and 6 should be
transformed to phase values in order to connect the three-

phase transmission line model to the rest of the system.
These variable transformations are given by

ahe [}
=T v

(26)

Q7
abe — fI: ilﬂ (28)

where v'* and v*™ are the vectors of modal and phase
voltages. The same notation applies to the current vectors
i'> and ™. It is well known that [T,]" = [T}]".
A three-phase transmission line is modeled by the
following equations:
I, =A,
y, =C, X, +d,, Ii
X, = A x +b I

22 mk
'
Yo = Cn

xlZ'I +b'zl ]Lm
i=1,2,3 (29)

+d1

zz ~ mk
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which are the state-space realizations of the transfer
function approximation of the characteristic impedance,
given in equation (24), for each one of the propagation
modes of the transmission line. There are two sets of
equations for each mode due to the duplicity of the blocks
in the diagram shown in Fig. 6.

The function P¢s) defined in equation (25) is
represented by

X‘P! = AjPl xI'J'I +b'PI u:’l
Yo =Co X, 0

i i i TR
Xpp = Apz X +b?z Uy

Ve =C X5,
where u denotes the input variable of the block and y is its
output. Again, there are two sets of equations for each
propagation mode.

The time delay is represented by the state-space
realization of the Padé approximation given by (26) and
the following equations are used in the model:

L i i P
Xp = Am n +bm ¥y

i i [
ym _me +dm “m

i=123 (31

X‘Dl = A;I x‘D! +biD2 u;n
y‘DZ = C x‘.DZ +d;2 u;!

The interconnection between the different state-
space blocks is made by algebraic equations. The
following relationships can be established from the block
diagram of Fig. 6:

[
Up =V
i i
H =
2 Fox i=12,3 (32)
i 2 |
Up = V5 + yZl

i i i
uD! =yPl +2y21
Additionally, the modal voltages can be written as
14
Vk‘ = yjPZ + y‘zl = [t“ t!i t3|‘]vdlc
1 ] { m

V.= Yo t¥, = [[u !

where £, is the (ij}-element of the matrix T; and Vool and

2 tﬂi ]vd:
Vae: are the nodal voltages vectors at terminals & and m,
respectively.

i=1,2,3 (33)

The current injections at the terminal nodes k& and
nt, referred 10 phase variabies, can be written as

. m
Lo ".I; LI

(G4
(35)

am Jmik
iy =T In

where i, and i, are the vectors of modal current

i)

injections at terminals k and m, respectively.

When the frequency dependency of the
transmission line model is neglected, the characteristic
impedance Z. becomes a constant and the function P¢s) in
(25) is made cqual to one. Thus the weighting function
A5} will be equal to the Laplace transform of the ideal

time delay . The functions in the block diagrain of Fig, 6
are very much simplified, as shown in Fig, 7,

Figure 7 — Modal Block Diagram for Ideal Line

If the losses are neglected, Z; becomes a real
constant and this block diagram will represent a lossless
constant parameter single-phase transmission line or a
propagation mode of a multi-phase line.

The losses can be taken into account considering
two distnbuted parameter transmission line segments
connected by lumped resistances [9].

3. RESULTS

Fig. 8 shows the test system used in this paper.

This system was proposed in [10] and was also used in a
work developed at COPPE/UFRI [11].
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Figure 8 — Test System One-Line Diagram

The objective here is to study the fast transients in
the transmission line between buses 3 and 4, when
subjected 1o single-phase short circuits. The system can be
partitioned at bus 3, resulting in an smdy system
containing only one transmission line and generation at
bus 8 and an external system with 3 transmission lines
and 2 generation buses.

All the transmission lines are modeled by
frequency-dependent distributed parameter models, using
the JMARTI Setup of the ATP program [9] with its
default settings. Table 1 shows the order of the rational
function approximations produced by ATP.

The external system is to be replaced by a reduced
order Norton equivalent located at bus 3.

Fig. 9 shows the frequency response of the transfer
functions from the current injected in phase a to the abc
voltages at bus 3: Vi s(s)/4.s(5), Vis(5)/Taa(s) and V s(s)/15(5).
Note that these transfer functions are dimensionally
equivalent to impedances.
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Table 1 — IMARTI Setup Transmission Line Model different orders. The external system was modeled by
descriptor systems of dimensions 1050, 1230 and 1410,

RATIONAL TRANSMISSION LINE for Padé approximations of order 10, 20 and 30,
APPROXIMATION i
respectively.
ORDER 1-2 2-3 1-3
Zc(s) T 23 75 24 ‘ The Padé approximations were able to correctly
P(s) 16 15 19 represent the frequency response up to a few kHz. If this
bandwidth is inadequate to the study objectives, one
70 should use a higher order approximation or adopt an exact
a0 frequency representation of the time delay function.
@ 50 /\ A l 1l '|:. - 70
= AWAWI T
B v . 1
=3
Z 30 & 50 1 1
g < \ A\
= 20 2 40 V v 4
10 2 30 )
(=]
0 A £
1.E+0 1.E+02 1.E+03 1.E+04 1.E+05 10
frequency {H2) 0
...... Padé=10 — — — Padé=20 — - ~ - Padé=30 ——ATP| 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
(a). Transfer Function ¥, 3(5)/5(5) frequency (Hz)
. ~——ATP ------ Order=53 — — — Order=69 — - — - Order=83
45 A i (a). Transfer Function V,3(s)/1.3(s)
& 35 WAV | 60
2 2 Vi
§ 25 A S0
] "i o J 4
g 15 $ ; 30 LE Wnu
10 II 5 TN vw
5 CE” 20
0 e = g 1
1.€+01 1.E+02 1.E+Q3 1.E+04 1.E+05 0
fi H
requency (Hz) 10
...... Padé=10 — — — Padé=20 — - — - Padé=30 ——ATP 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05
(b). Transfer Function Vis(§/Tas(s) frequency (Hz)
i ——ATP -~ --- Order=4g — - — Qrder=66 ~ - — - Order=31
l (b). Transfer Function Vy3(5)/1,a(s)
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B 4 A / \ A 70
~ A AY)
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(¢). Transfer Function V.s(5)/7,a(s) frequency (Hz)
Figure 9 — Bode Plots of the External System ——ATP ------ Order=49 — — — Order=66 — - —- Order=81|
The solid lines represent the results obtained using (). Transfer Function V,x(5)/1.s(5)
frequency scan with the ATP program. They are compared Figure 10 — Bode Plots of the Reduced Order Model
with those obtained with the proposed methodology, : )
considering Padé approximations to the tlime delay of The dominant poles of the transfer functions shown

in Fig. 9 were obtained using the Dominant Pole
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Spectrum Eigensolver (DPSE) algorithm, proposed in [2].
Almost 200 poles were obtained, using several runs of the
algorithm, with different initial guesses. Sets of 30, 40 and
50 of these poles were selected to form the equivalent
reduced order model. Fig. 10 shows the frequency
responses of these equivalents, compared with the
complete system response, obtained with the ATP
programn.

It can be seen that the matching of the self-
impedance ¥ _3(5)/1,.3(s) is better than those obtained for the
mutual elements Fy3(5)4aa(s) and Vis(s)Zas(s), specially in
the low frequency range. This is mainly due to a zero on
the ongin, characteristic of these mutual transfer
functions, that was not represented in the reduced order
model.

This transfer function zero is important to the time
response of the system, since it is responsible for the null
steady-state value of the voltages on phases b and ¢ for a
constant current injected on phase a. Thus, it should be
included on the reduced order model to achieve better time
responses. Work is now being carried out to take this
cffect into account.

4. CONCLUSTONS

An avgmented state-space formulation is proposed
to the analysis of power system networks transients. This
method can cope with linear networks of any order and
topology, and distributed-parameter transmission line
models can be used together with lumped-parameter
branches.

This formulation yields very sparse matrices and
efficient algorithms can be applied to obtain frequency
responses and time or modal analysis.

The transfer function dominant pole spectrum
concept was applied to obtain a reduced order dynamic
equivalent that matches the complete system frequency
response in a specified frequency range.

A clear advantage of the proposed dynamic
equivalents is their ability to properly consider ihe effects
of distributed-parameter frequency-dependent
transimission lines.

This formulation can be also applied to harmonic
studies, as described in [12].
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