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Abstract — Benchmark comparison of EMTP simulations
to actual waveforms is often done by presenting two
separate plots or by overplotting the fwo waveforms. To
improve on this approach for cases of periodic and steady-
state nonperiodic (chaotic) responses, a standard set of
analytical comparison measures is identified. These
include correlation coefficient, mean square error, RMS
and average values, DFT, phase plane (rajectories, and
invariant measure. A software tool is developed.
Measured and simulated waveforms from actual ferro-
resonance cases are used to illustrate these comparisons.
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I. INTRODUCTION

In the case of benchmarking EMTP simulations, little
attention is paid to the methods with which simulated
waveforms are compared to actual measurements. It seems
typical to declare success when the simulated time domain
waveform has "nearly” the same peak value and "looks like®
the measured waveform. While this may be the only
practicable method for transient responses, there are many
possible analytical measures which can be used in the case of
the steady-state and chaotic responses of a nonlinear system.
A great need is therefore identified for some standard

measures that can be used as a basis of comparison. Many"

different comparison methods are identified here. Their
degree of usefulness is dependent on whether the waveforms
in question are periodic or chaotic (nonperiodic). The work
presented here was done in order to benchmark transformer
models developed for ferroresonance simulations in a five-
legged core distribution transformer {5,7,8,9].

For periodic waveforms, several measures may be utilized:

¢ Pesk values.

« RMS values,

* Average values.

« DFTs (Discrete Fourier Transforms).

= Comparison of phase plane trajectories.
» Invariant measure,

* Calculation of a correlation coefficient.
+ Mean square error.

Not all of these measures are useful when considering
chsotic waveforms. Since sampled chaotic waveforms are of
finite length and have no definite period, average values and
RMS values are not as meaningful. Thus, & reduced set of
conventional comparison measures is available, but measures
from nonlinear dynamics and chaos theory might be applied
[1,2,6,10]. The following approaches are identified as being
useful for chaotic waveforms:

* Peak values.

» DFTs (distributed and discrete frequency components).
* Invariant measure.

* Visual inspection of Poincaré sections.

+ Fractal dimension of Poincaré sections.

The comparison measures mentioned here will be defined
or described in the next section. Most of these measures are
then incorporated in a software package, illustrating their
usage in the process.

[I. DEVELOPMENT OF COMPARISON MEASURES

Comparison of peak magnitudes is most valuable for sharp-
peaked waveforms such as ferroresonant voltages and
currents or transformer exciting current at high levels of
applied voltage. Peak values can be obtained by simply
scanning the waveform data for minima and maxima.

The average value of a waveform is important when dc
offsets are present. Even when offsets are not present, a dc
value might be artificially introduced into measured
waveforms if an oscilloscope is not properly zeroed.
Calculating the average therefore provides a means of
spotting erroneous data. For voltage and current waveforms
that more closely resemble a distorted sinusoid, RMS values
are a useful basis of comparison. The average value F,yg
and RMS value Fg,y,s of a function f(t) over a period of T
seconds are given by the expressions

T
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DFTs show the spectrum (sinusoidal frequency
components) of the waveform. There are a plethora of
software packages that provide Fast Fourier Transform (FFT)
capabilities for spectral estimation of uniformly-sampled
signals. The number of points, NPTS, that the commonly
used "radix 2" FFT algorithm operates on is a power of 2.
The uniform time base At of the waveform and the frequency
spacing Af of the FFT are related by

Af= —L | @)
NPTS x At

Artifacts (side-lobe distortions in the shape and errors in
the magnitude of the FFT-derived spectrum) may appear due
to automatic "features” of the FFT software, such as zero
padding and windowing [3]. In addition, "spreading” due to
the choice of a time step incommensurate with the period of
the waveform will occur, and the frequency magnitude will
be in error. These effects were investigated in [7], and are
all related to the relationship given by (3).

DFTs are a suitable comparison for both periodic and
chaotic waveforms. With proper implementation, a discrete
"line spectrum"” can be obtained for periodic waveforms. For
chaotic waveforms, a distributed spectrum will be observed.

Phase plane trajectories can be obtained by plotting a
waveform versus its derivative [1,10]. This method was
clearly demonstrated in [8]. The trajectories for periodic
waveforms repeat, providing a closed-path. Overplotting the
phase plane trajectories of two waveforms provides a better
comparison than overplotting just the actual waveforms. Both
the magnitude and slope of the waveforms can thus be
compared. Phase plane trajectories are not useful for chaotic
waveforms, since there is no closed path,

Invariant measure is the two-dimensional distribution of the
magnitudes and derivatives of the sampled points of the phase
plane trajectory [10]. The distribution of amplitude values of
a waveform can be considered a reduced-order invariant
measure. One very important restriction on the use of
invariant measure is that the points must be uniformly
sampled in time,

Time cross-correlation [4] of two waveforms g, (t) and g,(t)
having the same period T can be determined as

+T]2

R,,(x) = %, f 8,0 gy{t+t)dr . @
-2

Cross-correlation can be calculated for various shifts of 7,
but to determine how alike two waveforms are, it is necessary
to compare them when they are most nearly superimposed.
Some way of synchronizing the waveform data must therefore
be implemented. Matching of the positive-going zero
crossings of the two waveforms seems be the most logical

method of synchronization. A value of 7=0 shall be defined
to mean that the positive-going zero crossings of the two
waveforms coincide. Positive values of 7 mean that g, has
been shifted backward relative to g,.

Values of R, must be normalized so that the cross-
correlations for families of waveforms can be compared. The
geometric mean of the autocorrelations R,(7) and Ry(7) of the
two waveforms evaluated at =0 is used for this
pormalization. (R,(0) and R, (0) are the average powers of
the signals g,(t) and g,(t}, so normalizing in this way ensures
that R,, will always be less than or equal to 1.0, with
identical waveforms having a correlation coefficient of 1.0).
R,, from the above equation is thus redefined as

+Tf2
1

R (1) = ———— [ gg@+)dr . O
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Mean square error is defined as

© S, =y

[gz(t"'t) - 81(‘)]2 dt

T
[eio &
0

MSE = ©

where the square error between g, and g, integrated over the
interval T is normalized to g,? integrated over the same
interval. In this case, g, is assumed to be the "true” value
for the basis of comparison. g, is shifted by the same 7 as
described in (4) and (5).

A Poincaré section [1,10] is a set points synchronously
sampled from the phase plane trajectory. Typically, the
sampling is done once each period of the forcing function (for
example, once each 60-Hz period). This is advantageous in
the case of & chaotic waveform that has a blurred
nonrepeating phase plane trajectory. Displaying the sampled
points on the phase plane gives a convenient quslitative basis
of comparison.

Since Poincaré sections are the synchronously sampled
maguitude and derivative of the waveform, a great deal of
information is at hand. The shape of the Poincaré section is
highly sensitive to the behavior of the system being observed.
Poincaré sections composed of points that are more uniformly
distributed over the phase plane characterize a system having
relatively little damping. Poincaré sections whose points are
constrained to a smaller area of the phase plane are more
highly "dissipative" [10].

Fractal dimension provides a numerical measure and basis
for categorization and comparison of Poincaré sections. An
algorithm to calculate fractal dimension was developed in [7]
but was not implemented in the software to be discussed here.
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III. PROGRAM IMPLEMENTATION

Many of the above comparisons were implemented in a
program named "XCOMP," an acronym for
"cross-comparison.” The program allows comparison of both
periodic and nonperiodic waveforms. All examples presented
here are actual laboratory and simulation data [7,8].

Use of XCOMP is fairly simple. The user is prompted
for the names of the two input data files. Binary datd files
having the EMTP .PL4 extension and the . ALL extension of
the laboratory digital storage oscilloscope’s waveform files
are recognized. A preview display of the waveforms allows
visual inspection prior to comparison, avoiding erroneous
comparisons of unlike waveforms. Based on visual
inspection, the user then specifies the period of the waveform
(period 2 implies 30-Hz subbarmonics, pericd 3 implies 20
Hz, etc.) and where along each waveform XCOMP is to
begin searching for zero crossings to use for synchronization.

This feature is especially useful for bypassing the transients
occurring at the beginning of an EMTP simulation and for
choosing a consistent starting point for waveforms which have
subbarmonics. The waveforms typically will have different
time step sizes, requiring conversion of the data’s time base.
Linear interpolation is used. XCOMP then matches the
waveforms' zero crossings, calculates required statistics, and
plots the results on the screen, as shown in Figs. 2 and 3.

Fig. 2 shows output for the comparison of period one
waveforms, demonstrating the capabilities of XCOMP.
Waveforms are shown in upper left comner. Invariant
measure is shown in lower right, DFT in lower left.

Equation (5) is implemented such that minor shifts in 7
were made in the neighborhood of 7=0, until a maximum
value of R, is found. Visual inspection of the two
waveforms would indicate that they are nearly identical. The
correlation coefficient of 0,9811 would also indicate close
agreement. Mean square error has been found to be a much
more seasitive and useful comparison. It has not yet been
implemented, but will be added to XCOMP in the future.

The phase plane diagram is much better able to distinguish
slight differences in the waveforms. Small differences in
magnitude and slope are much more evident.

Invariant measure displays differences in distribution of the
magnitudes of the data points. The magnitudes of all
waveform points within the interval being analyzed are
rounded to the nearest of 128 quantizing levels. The number
of points at each level is plotted against the magnitudes of
those levels. Note that the waveform traced by the
solid line has data points whose amplitudes are more
uniformly distributed than the other waveform. A triangle
wave would have uniformly distributed amplitudes.

Mean values are both very small, as is expected. Extrema
and RMS values are also given.
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Fig. 1 - Demonstration of XCOMP’s preview feature,
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Fig. 2 - Example of graphical output from XCOMP program for comparison of periodic waveforms.
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Fig. 3 - Comparison of chaotic waveforms using XCOMP program.
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The DFTs are nearly in agreement. The implementation
used here is based on relationships given by (3). When the
time base of the waveforms is adjusted, a At is chosen such
that NPTS is exactly a whole number of cycles, and Af
ensures that frequency components provided by the FFT fall
exactly on the 60-Hz harmonics and subbarmonics. No
windowing is used. This results in line spectra. When a
commercial software package was used to perform an FFT on
the same waveforms, it automatically applied zero padding
and windowing. It did not yield integer frequency spacing.
Problems with side lobes, frequency spreading and incorrect
magnitude scaling were evident. When performing an FFT
on periodic waveforms, XCOMP never requires zero padding
or windowing and will always provide a correctly scaled line
spectrum. Selection of At is illustrated in Table 1.

At NPTS | Af, Hz 60-Hz
Cycles
B i
91.553us 8192 1.333 4500 |
2048 4.883 12.29
100.00us 4096 2.441 24.57
8192 1.220 49.15
2048 4.0 15.00
[ 122.07us 4096 2.0 30.00
8192 1.0 60.00
1024 4.0 15.00
[ 244.14s 2048 2.0 30.00
4096 1.0 60.00

Table 1 - Selection of At when performing FFT.

Fig. 3 shows an example of XCOMP output when
comparing two chaotic waveforms. Only the extrema,
invariant measures and the DFTs can be shown for this type
of waveform. Note the distributed frequency spectrum that
is characteristic of a chaotic signal. Poincaré sections and

" fractal dimension were not implemented in XCOMP, but have
been investigated [7,8]. Since only one point can be sampled
per 60-Hz cycle, a very long waveform sample would be
required to obtain the 3000 to 8000 points needed. The
subject of fractal dimension and its usefulness as a
comparison measure shall be addressed in a future paper.

IV. CONCLUSIONS

Many waveform comparison methods were identified and
discussed. A normalized correlation measure was developed
and implemented. Mean square error measure was identified

as being a more sensitive comparison measure. Waveforms
of standard At such as 100 us must be resampled to avoid
FFT-induced artifacts in the resulting spectrum. It may be
useful to identify and evaluate more comparison measures for
chaotic waveforms.

XCOMP is a useful tool which provides a meaningful set
of analytic comparison measures for benchmarking. It wili
be ported over to more modern operating systems and
extended to allow input of additional data file formats.
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