Transmission Lines: Fitting Technique Optimization
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Abstract - In the EMTP, the transmission line model Z k Z,t m
proposed by J. Marti is largely used. Multiphase lines are i
first decoupled through modal transformation matrices. 3
For each line mode, the characteristic admittance ¥ (@) d

and the propagation function A(w) are approximated by

rational functions using the accurate asymptotic fitting Fig. 1: Single-phase transmission line.

technique. In this paper, an opfimization procedure to fit o

rational functions to ¥.(e) and A(w), is presented. It is  The transmission line equivalent circuit, in the frequency
shown that the number of poles and zeroes of the fitted domain, is shown in Fig. 2, where

functions can be considerably smaller than those obtained By(@)=Vi(0)~ Z(0) Jin(®) = [Vul @) + Z (0). Sl @]} () 5

by the asymptotic procedure, over the entir_'e frequen?y Bof(@)= Vpf @)~ Z0).d (@) = [Vi(0) + Z(@)Sinf@)] A(0) -
range and preserving good accuracy. Time domain

simulations are performed for three-phase overhead lines.

k z ' Z m
A considerable reduction in computer time is achieved. e o
% [ B B [ Va
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Fig. 2. Transmission line equivalent circuit [2].

I. INTRODUCTION

Frequency-dependent transmission line modelling is very
important for transient studies [1,2]. J. Marti's work [2] led  For time-domain simulations, Z.(a) is approximated by
t0 a solution method which is largely used today. For each Z.(@) , produced by a series of RC parallel blocks (Foster 1
line mode one needs to know the propagation function A(ey realization - Fig. 3).
and the line characteristic impedance Z.(@): R R

. TIME-DOMAIN MODEL

: — ; K W
Z(0)= [Fle)tia(e) 2@ A ol g T i I
Y Gla}+jeC  Y¥@) i
and “ G % B
Al@)=eTlM.
where: Fig. 3. Equivalent circuit for time-domain simulation.
Z'(@)=R'o)+jol'(w), YTie)=Glo)+jeol . .
@) (ar) / (w) Fw) (a;) /e The RC parameters are calculated according to the following
#{@) = JZ0a(@).% 0 () = Propagation constant steps:
R'(@} = series resistance; L (e = series inductance; 1. in the complex plane (s= ot+j@), Z. (@) is written in
G (e = shunt conductance; C’ = shunt capacitance rational function form:
d = line length; 7= travel time. 2, (9=NO_ gy Grz)(sr5).(s+2)  withn=m; (1)
(primed quantities are in per unit length) T D) (s+p)s4 pa)eonn(s+ Ppy)
With J. Marti’s formulation, A(e) can be easily interpreted. 2. Writing Z.,(5) in partial fraction form,
Consider the open-ended single-phase transmission line of - L=kt — Ry Em @)
Fig. 1, in which the sending end is connected to a voltage ' +p) (s+pr) (s+ Pn)
source V7. A(w) is the voltage ratio: the RC parameters are obtained: R~k Ri~k/p;; C=1/%; ,
A(w)= Vol@) _ rle)a fori=1,2...,n.
V(w)
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In Fig. 2,
B(@) = V(@) ~ Z. (@) = [V (@) # Z..J y(@)] A4(@).-
Then, from the circuit in Fig. 3;

b(t) = [ fu(0).a(t).de>

where: F (@) = Vpfa) + Z (w). (@)
Jm(t) = inverse transform of Fo(@);
a(t) = inverse transform of A(w).

aft) is obtained from A(w) in the following way:

@

1. A(w) is approximated by A.,(e) which, in the complex
plane (s= ctjw), is written in the form;
A, ()= P(s).e”"™,
where %, is the travel time of the fastest waves, and

.P(s)=@=H- (s+zZ)(s+2)......(s+2,) . withn<m- 4
D(s) s+ p)(s+ p)..e.. (s+ pn)
2. Ayy(5) can be written in the form,
ARk kB e e s, (5)
Aeq ) {s+p,+s+p2+ +s+p,,,} ¢
and in the time domain,

g ()= P e el Ted gy fe ATy i~ 7,3 - (6)

at) is replaced by a.,(t) and equation (3) is evaluated with
recursive convolution at each time step.

1. THE ASYMPTOTIC FITTING TECHNIQUE

The success of the described approach is the quality of the
rational function approximations for Z /@) e Afw). J. Marti
uses the asymptotic fitting technique based on Bode's
procedure for approximating the magnitude of the functions.
Since the rational functions have no poles or zeroes in the
right hand side of the complex plane, the corresponding
phase functions are unicuely determined from the magnitnde
functions. The basic principle is to approximate the given
curve by straight-line segments which are either horizontal
or have a slope which is a muitiple of 20 decibels/decade.
The points where the slopes change define the poles or
zeroes of the rational function. The number of poles and
zeroes are not determined a priori. The approximation is
done in a step by step fashion starting from DC to the highest
frequency.

The asympitotic fitting technique is accurate, but it can lead
to a large number of poles and zeroes of the approximated
functions [3,4]. A smaller number of zeroes and poles may be
found if a reduction is made in either the frequency range or
accuracy [5]. In the next section, an optimization procedure
to fit rational functions to Y, (@)=[Z.(w)]' and A(w), is
presented. It is shown that the number of poles and zeroes of
the fitted functions can be considerably smaller than those
obtained by using the asymptotic procedure, over the entire
frequency range, without sacrificing accaracy.

IV. THE OPTIMIZED FITTING TECHNIQUE

Y.,(s) and P(s) in (4) are determined from the magnitude of
the phase functions Y,(w) and A(@). For s=jo, [Y«(w)]* and
[P(@)T* can be written in the forms

g A0+ D 0 4 D). . (4,07 + 1) (T0)

Y 2
X (@) B+ DB, + 1) (B, > +1)
and
Payte g2 L@l t) | (ypo?sD 1 1 (7b)
(B[-m1+1) (B,..w2+1) By "‘1)‘(3,,.0)24-{)
for n<m.

The parameters H, 4; and B; are found iteratively using the
nonlinear least square optimization procedure due to
Levenberg-Marquardt [6,7,8], in which the function to be
approximated (equation 7) and its Jacobian are kmown in
analytical form. Once H, 4; and B; are determined, the poles
and zeroces of Y,,(s) and P(s) are obtained by:

z,=1/J4; and p,=1/B;.

Computational Procedure
1. Characteristic Admittance

a) The user defines the number of poles » equal to the
number of zeroes. The frequency axis is divided in » equally
spaced intervals in logarithmic scale, starting with the
interval between @m:» and @; and ending with the interval
between @, and @, (Fig. 4). To start the iterative process,
the initial guesses for 4; and B; arc taken in such way that the
poles p; are at the centre of each interval and the zeroes at
2;=0.8 p;. The initial guess for / is H =Y (tni).
b) find the error function %* between the known [Z.(®)]*
and the estimated [Z.,(&)]* curves, for the whole frequency
range,
¢) usc the Levenberg-Marquardt method starting the
iterative process. 4;, B; and H, are obtained when %° is

minimume o)

v

Omin @) @ By Omix
Fig. 4. Estimation of zeroes and poles of Y,(s).
2. Propagation Function A (e

In computing the characteristic admittance Z,,(s5), no
convergence problems were found. However, they may occur
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when computing P¢s). To avoid them, the fitting process is
made in one or more steps:

a) from FDDATA™ [9] output files, one know the phase
angle of A(w),or P(w). If the phase angle of P(a) is less then
90° degrees, the fitting is made in a way the number of poles
exceeds the number of zerces by one. The iterative process is
started and the parameters 4;, B; and H are found;

b) the new pole is added at p;.,=1.2p; and the iterative
process is re-started taken the parameters obtained in the
previous step as initial guesses.

V. CALCULATED RESULTS

Consider the three-phase untransposed overhead
transmission line with four bundle conduciors and an earth
line data are shown in Table 1.

..... a 03048 m

Y

a5 m

3124m

Ad l ~ v

FITTT777777777 7777777777777 77777777777 .
Fig. 5. Untransposed three-phase transmission line.

Table 1 - Basic transmission line data of Fig. 5.

Number of circuits 1
Number of conductors per phase 4
Number of earth wires 1
Conductor resistivity 32nQ.m
Earth-wire resistivity 26,9nQ.m
Conductor strand and earth-wire diameter 28,6 mm
Earth resistivity 20,0 Qm
Linc length 1600 km

From FDDATA™, the zero, positive and negative modes
of Y.(w) were computed for a frequency range from 1072 Hz
to 10° Hz. The zero mode of 4(@) was computed from 102
Hz to 10° Hz and the positive and negative modes from 107
Hz to 10° Hz. The asymptotic (FDDATA™) and the
optimized fitting procedures were wsed to find the rational
function approximations for Y.(@) and A(@w). The fitting
results for the zero mode of ¥.(@) are shown in Fig. 7 to 10.
In the whole freguency range, the accaracy or the function
obtained by the optimized procedure is better than the larger
order function obtained by the asymptotic method. For the
zero mode of A(@). the number of poles exceeds the number
of zeroes by two (Fig. 11 to 14), This may be the cause of
higher errors in magnimde and phase of both fitted curves.
The maximum errors for the magnitude of the fitted
functions are summarized in Table 2. The optimized fitting
procedure produces lower order rationzal functions.

Admitance (mhos)

Phase (deg.)

Phase Error (deg.)

Characteristic Admittance

- Asymptotic Fitting (19 poles, 19 zeroes)

Cptimized Fiiting (10 poles, 10 zeroes)
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Fig. 7 - Admittance magnitude.
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Optimized Fitting (10 zeroes, 10 poles)
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Fig. 8 - Magnitude error curves for ¥,,.(@).
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Fig. 9 - Admittance Phase.
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Emor - Asymptotic Fitting (19 zeroes, 19 poles)

Enror - Optimized Fitting (10 zeroes, 10 poles)
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Fig. 10 - Phase Exror Curves for ¥..;(a).
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o2 T Optimized Fitting (4 zeroes, 6 poles)
1111] T ||||11T] T llIIiIII T Ililmll T IIIliEI'i T ||||rIT|_I_I'ITI'I1T|_!_|‘I'I'I1Tr|
10E-2 10E-1 1OE+0 1.OE+1 LOE+2 10E+3 LOE+4 L.OE+5S
Frequency (Hz)
Fig. 11:A{e) - Zero mode frequency response.
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Fig. 12: A(e)-Zero mode error (%6).
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Fig. 13: A{@)-Zero mode phase.
10 —
~ 8-
g g_| =~ Asymptotic Fiting (24 zeroes, 26 poles)

———  Optimized Fitting (4 zeroes, 6 poles)

N

1.0E-1 LOE+0 1.0E+1 1.0E+2 1.0E+3 10E+4 1.0E+S

Frequency (Hz)
Fig. 14: A{a)-Zero mode phase error.
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Table 2 - The fitting procedures.

Asymptotic [2] timized Fiiting
number | number | maximum | number | number | maxinwm
Mode of of error(%) of of poles | error(%)
ZETOES poles ZEIoes
ZEL0 19 19 10.960 10 10 0.236
Y@ positive i3 13 10.170 08 08 0.178
] nemtive 14 14 10.670 09 09 0.073
Ze10 24 26 5.675 04 06 4.567
Afay | positive 20 21 8.949 05 06 0.136
negative 24 25 3.569 05 06 0.530

VI. DIGITAL SIMULATIONS

MICROTRAN® [9] was used to carry out time domain
simulations for the open-ended line of Fig. 5, using data
obtained with the asymptotic and the optimized fitting
procedures. A unit step voltage was applied to each phase at
the sending end. A time step Ar = fxs and the modal
transformation matrix, calculated 1,2 kHz from FDDATA™,
were used. The simulated results are shown in Fig. 15.

The simulation times for the frequency dependent models
with the two model parameters are compared to the constant
parameter model, taken as the reference model, produced by
MTLINE™[9]. The results are shown in tables 3 and 4. For
the model obtained with the asymptotic fitting procedure, the
simulation takes 82,75% more time. However, for the model
in which the parameters were obtained by the optimized
fitting procedure, the increment in time would be only
58,62%.

Table 3 - Simulation time per time step

Simulation time / Number of time steps

Constant parameter Model obtained from Model obtained from
model tic fitting optimized fitting

29.0/25000=116ms | 53,0/25000=2,13 ms | 46,0/25000=1.83 ms

Table 4 - Total processing time.

Total processing time
Constant parameter Modei obtained from Model obtained from
model asymptotic fitting | _optimized fitting
290s 53,05 46,0 s
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Fig. 15: Energization of a three-phase line.
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VII. CONCLUSIONS

An optimization procedure to fit rational functions to Z.(a)
and A4(«), was presented. Simulations were performed for a
three-phase overhead transmission line. It was shown that
the number of poles and zeroes of the fitted function can be
considerably smaller than those obtained by using the
asymptotic procedure, over the entire frequency range an
preserving good accuracy. :

" Low order models may be important for real time
simulation investigations and for studies in which
transmission lines need to be subdivided into several
sections, such as corona studies [11).
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