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Abstract — This paper presents a method for time-domain
transient computation based on the state space equations
for the power system elements and a modified algebraic
nodal equation for the elements connecting. The well
known line models with distributed and frequency-
dependent parameters can be incorporated easily in the
algorithm. Non-linear characteristics of the eleifients and
time step size changes do not lead to additional iterations
in the solution process.
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I. NTRODUCTION

Usually, transients in power systems are computed on the
basis of a system of linearized algebraic equations. These

linearized algebraic equations are normally derived from the

differential equations of the network branches by applying the
trapezoidal mle. The method has gained universal acceptance
under the name Difference Conductance Method (DCM) {1].

The advantage of modeling with algebraic equations can
be seen primarily in a simple algorithm for the connection of
the branch equations to the network nodal equations without
using any topological matrices. On the other hand time con-
suming iteration steps are required if nonlinearities are con-
sidered and/or network structure changes (due to faults) or
changes in the time step size occur.

The power system modeling with state space equations or
algebraic-differential equation systems are other solution
methods that can be used in place of the linearized aigebraic
equation system [2]. Both the formulation and solution of the
complete system of state space equations are sophisticated
and require topological aids (i.e. definition of trees). Because
the eigenspectrum of the system state matrices is very wide,
the solution of the complete state space equation system re-
quires time consuming implicit integration methods. Changes
in the network topology, due to faults, as well as certain non-
linear characteristics of the elements, make a new formulation
of the state space equations necessary.

This paper develops a new power system modeling
method based on both a set of linear algebraic equations and
a set of state space ones. From the algebraic equations the
nodal voltages are obtained at each step in a similar manner
as in the DCM algorithm. The advantage of the Kirchhoff's
node law for the coupling of the elements is used, too. The

state space equations of the elements keep their form and are
not linearized. They are solved separately by a conform inte-
gration rule and time step size for each type of elements. This
has further advantages as the multi time-scale character of
the power system [3] can be used for an effective solving
process, and the model yields a parallel structure. Elements
with non-linear characteristics, such as electrical machines,
can be integrated by explicit integration rules avoiding itera-
tion steps.

il. MODELING OF POWER SYSTEM ELEMENTS

The power system elements (PSE)} are normally modeled
by equivalent circuits consisting of combinations of resistive,
inductive and capacitive branches as well as voltage or cur-
rent sources. For lines, special models with distributed pa-
rameters taking into account their frequency dependence have
been developed [4].

The PSE models can generally be divided into models
with lumped parameters (LPM) and those with distributed pa-
rameters (DPM), as shown in Fig. 1.

The LPMs consist of R-, L- and C-elements and voltage
or current sources. According to terminal characteristics the
LPMs can further be classified as inductive models (LM), ca-
pacitive models (CM) and resistive models (RM). A LM be-
gins with an inductivity seen from the terminals. Therefore
the terminal voltages are independent variables (or input vari-
ables) and the terminal currents are state variables. CMs are
characterized by a capacity as the first element at the termi-
nals. Consequently the terminal currents are input variables
and the terminal voltages become state variables. RMs begin
with a resistivity and have no terminal state variables. Input
variables can be the terminal currents or voltages. In the fol-
lowing, the terminal currents are preferred as input variables
for RMs.

PSE Models (Generators, Transformers, Lines etc.)

Lumped Parameters Mod. (LPM) Distributed Parameters Mod. (DPM)
(R, 1, C-networks)

Inductive Models (LM) Capacitive Models {CM)  Resistive Models (RM)

(Generators, Transformers, (Capacitances, Linesas (Loads, DPM line models with
Lines as cascaded T-sections ) cascaded Pisections) controlled current sources)

Fig.! Classification of PSE models
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The general implicit form of the state space equations for
the LMs and CMs in matrix notation is:

F;e F;i x.e H ee H ef xe y e
ML = (1)
Ee F;i x.l' H ie H 5 xi y i
Equation (1) is partitioned in terminal or external (e) and in-
ternal (i) state and input variables.
From (1) only the external variables x, and y, are needed

for the connection with other elements. Therefore it is useful
to write the first row of (1) in the following form:

Fx +H,x +q,=), (2}
in which the influence of the internal state variables is ex-
pressed by a controlled source vector

g, =F,x; +H,x, 3)

From the Tab. 1 we can see the specific form of (2) for
the three kinds of LPMs. Fig. 2 shows the corresponding
equivalent circuits with the typical elements seen from the
terminals and contrelled sources. Note that each inductivity in
the LM-circuit has a resistivity in series and each capacity in
the CM-circuit is in parallel with a conductance.

TABLE
Meaning of LPM Terminal Quantities
Model X X y. 4. F, H,
Capacitive (CM) &, w, i, i, C, G,
Inductive (LM) i i w, w, L, R,
Resistive (RM) S 7N A P Gy

In original abe-coordinates alt conductors are coupled so that
R.., L., Gee, Gree and C,, are usually full 3x3 matrices.

a) -2 b) l" -ttt T TS T ST T

c) F 2L

G&.
Fig.2 Three-phase equivalent circuits of a) LM b) CM and ¢) RM

Example 1. Inductive LPM for a synchronous generator

For a generater being symmetrical in the subtransient state
(Ly"=Lg"=L"}, (1) has the following detailed form in phase-
coordinates:

L, L, L | [R 0 07i] (]| las]| [m
L, L, Lofg |+ 0 RO [, |+ uy |+ |=|n
Ly L, L, |i 0 0 R i |up| e8| |u

@
Substituting

Uy = Rpging + Lygdpy = Ry (i, +8, +i,)+ LM(ia +i, +z:t) (5)

in (4) we get:
(L, L, LTL] [R, R RTi] 2] Tw]
L, L, L,

l:b + ‘Rn Rm Rn ib + u; =1 (6)
L, L, L,|i| |R R |i €| |y

" " m [ < (4

or in matrix notation, in agreement with (2);

L.i +R,i + u, =u, {6a)
The matrix elements and the equation for the computation of
the subtransient voltages as a function of the internal state
variables are given in the appendix. In this equation all non-
linearities of the generator are included. The special case that
the neutral point is not grounded will be discussed below (see
example 2).

For the connection of the elements the explicit state space
equation form of the inductive LPMs is necessary. To obtain
it, (2) written in special terms of LMs is multiplied from the
left by L, getting;

i =—LR i —Llu, +L u

e eete ce " ge ee™te

=A,i-B.u

ee " ge

+8B.u,  (7)

After expanding with 1/ax on the left and rigth side, (7) is
changing to a node equation again:

1

— i, =i =Y, iy, ®)
@y
with:
1 1
Yee =—Bee =—L“ (9)
@y @
and:
. 1
IqLe = —C;;Aeele - Yeeuqe (IO)
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Example 2. Explicit form of generator LM
Starting from (6) the diagonal elements of ¥,, become:
y-Llpg -] [3+ 1]2_1_(1+¢]=1(2),‘%,)
' @, 3o \L, Ly 3\X, X;) 3

(1n

The ofi-diagonal elements of ¥,, are:

LI [L_J_]:_l[L_L):_l(yl_m
@, 3w \L, L 3NX, X 3

(12)

For the elements of A,, we find:

1 1
4, =-30,2ER +TR), 4, = 0,(RR -KE)  (13)

If the neutral-point is not connected with the earth the
elements L), and Ry, are infinite and the matrices L, and R,.
becomes irregular. In this case, we assume first that [, % o
and obtain the above given expressions for A,. and ¥,.. Then
we set Yy = O obtaining the matrices 4., and ¥. with the
elements:

Y —EY Y’=—1Y Al =—-2—a) YR, 4 =—1-a) KR (14)
m_3l’ n 3]’ " 30119 n 3011
From (14} we can see, that the 4., and ¥ become also ir-
regular. This means, that concerning i, + i, + i. = 0, only two
currents are state variables, and A/, has a zero-eigenvalue,

The singularity of 4., and ¥.. does not create difficulties in

the solution process of the explicite state space equation.
Only one of the three differential equations is integrated un-
necessary.

For the next steps the element equations are summarized
in the following matrix form:

gl [n o o\e] [y,
=0 Gy 0 |lug|+| in (15)
io] [0 0 G.|u| [Ca,

[1I. THE ALGEBRAIC NODE EQUATIONS

According to the kinds of elements which are connected at
the corresponding node we define 3 different types of nodes.
The node designations are obvious from Tab.2,

TABLE I
Designation of the Node Types
Node Type Elements at the Node
Inductive (LN) LM only
Resistive (RN) RM only or RM and LM
Capacitive (CN) | CM only or CM and RM and/or LM

So the designation LN means, only inductive elements are
connected with this node type. At a RN, both the resistive and
inductive e¢lements or only resistive elements are connected.
The CN is the common node which connects all 3 kinds of
elements. The special cases, only CMs or only CMs and RMs
or only CMs and LMs are allowed.

For the connection of the elements at the various types of
nodes, Kirchhoff’s current law is written by means of the
nodal matrix (basic incidence matrix) in the following parti-
tioned form:

IM RM M

K, ¢ 0 ||
w| K, Ky, 0
w| K, Keg

i |=0

(16)

Kee ||Lic

The zero sub-matrices in the first row of the nodal matrix re-
sult from the fact that only LMs are connected at a LN. The
zero sub-matrix in the second line indicates that no CMs exist
ata RN.

Equation (16) is transformed to;

K, o0 o017 0
0 Ky 0 |ig|=|~Kgi (17)
0 KCR K cC ic _KCL i;.

with the modified nodal matrix K.

Now we differentiate the first row of (17) noting that the cur-
rents of the LMs are state variables and therefore differen-
tiable. After multiplying the first row by 1/w, we get:

K, 0 o7& 0
0 Kp 0 |[i|={-Kgi, (18)
0 KCR ch ic _KCL i:.

remember that (see (8)):

1

I =—I
L L
@y

The terminal voltages of the elements can be expressed in
terms of the nodal voltages by means of the iransposed nodal
matrix K’ from (16):

Uy K, Kg Ky, || up
ug|=| 0 Kz K gx Hpp (1%
Ue 0 0 Kg|{uyc

‘Substituting (19) in (15) and substituting the thus modified

(15) in (18) yields:
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K, 0 oy, o o]k, Ky K|uy
0 Kp 0|0 G, 0 0 Kp Kipl|lug|=
0 Ki Ko |0 0 G| 06 0 Ko |wye
_'KLLiqL
= Ky iy — K i g (20)
—Kei, -K CRiqR - K(‘Ciq(‘ - Ko Ci
The multiplication of matrices is resulting in:
K, YK K, YKy K Y K¢, Hpy,
0 K G oK e KprGrKer Hyp | =

0 KenGoKip KooGoKie+ KoyGrKey || e
-K ,_Liq,_
= A (21)
Ko i, — Keplop — Kool —KecCle
or more briefly:
Y, Y;i Yo |l#m "
8 G Grc| 4w |=| inn (21a)
0 G iGee || #nc inc

IV. SOLUTION PROCESS

The basic solution process is as follows (see also Fig.3).
First, the YG-matrix of the algebraic equation (21) is set up
directly from the network structure following to a great extent
the standard algorithm for the formation of the admittance
matrix in steady-state analysis. Since the voltages uy, are
state variables and therefore well-known at each time step,
(21) can be reduced to:

Y, Yp|loaw _ b | | Yie u

0 G [ ivr Grc e
Next, (22) is solved using ordered triangular factorization and
exploiting the matrix sparsity. The special form of the YG-
matrix, which contains a upper zero sub-matrix, accelerates
the factorization procedure. Knowing the node voltages wy,
and myg, the terminal voltages #; and g of the inductive and
resistive elements are also known from (19). Now the LMs
and RMs currents are calculated from the first and second
row of (15).

For solution of the inductive state space equations an
explicit integration rule can be used. Finally, using currents
known, the source values and the node voltages uy.- at the ca-
pacitive nodes are updated.

22)

>l K
|+— G . e
R -
—>— K.
algebraic eq. (15)
of RM s
>— K,
- i
> KT, > _[dt >t
KT non-linear state space
L eq. (15) of LM s
R Gl —|-
Hyy,
< algebraic <
- nodal equations (21) <
Hyg
state space eq. (24)
for the CMs
< _[dt -
Hye <

Fig.3 Structure of the set of algebraic and of state space equations

To calculate yc, the eliminated last row of (21} is available:

Gopttur + Goctiye = iye =~ Koy d) — Kegiop — KCC‘iq(‘ - K Cag
(23)
and with fi. = K.y according to (19):

Cocltne =—Gcctiyc —Kyip — K crbor — Keclye = Goptt e (24)

The matrix Cg. = K.-C K/ is the capacitive nodal ma-

trix. It is formed in the same way as the nodal admittance
matrix. This is from the fact that in a pure capacitive network
the node voitages form a state variable vector.

From Fig. 3 we can see the separate integration of the
elements state space equations and the parallel structure of
the model, too. As the element equations are kept in their
conservative form, an object and parallel oriented computer
program structure is indicated.

V. ONE BASIC EXAMPLE

As a simple example, let us consider the system shown in
Fig. 4. The line 1 should be representated by a LPM and the
line 2 by a DPM. Then the model consists of 4 LMs (E1, E2,
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E3 and E2), 2 RMs (E5 and E7) and 1 CM (E&) with 4 nodes
(N1 asa LN, N2 as a RN and the nodes N3 and N4 as CNs).

To simplify the notation and for more clearness, all ele-
ments are described by single-phase models. Additionally, the
LPM of line 1 should be consist of only one n-section (being
a CM), and the damping in the DPM of the line 2 is omitted.

The state space equations in the explicit form for the in-
ductive elements are:

FY B | H _ .
El: i =o-1 =Xuy +i,
P R ;
E2: iy =1, =Yu, +i,
FEET R I -
E3: iy =~ =Y, +i,;

&,

..,_¢:_ .
Ed: ij = -1, =Yu, +i,,

The algebraic equations for the resistive elements are:

ES: k=G u
ETA: b, =Gru, +ip,
E7B: by =Grtyp+ipg

The state space equations for the capacitive elements
have the form:

fgq =gy + Gl +Co i,

Igp = lpgn + g ey + Cy ity
For the computation of the source quantities we have:

U, = i, cos(wyt +p,)

Upy = 1y cos(coot +(a4)

Iy =a+,,A| i —Nuy

iql = m%, A4

iqs = a;]_DAJ A

- :'m;‘,A‘@ iy =Yy,

ina=~G; u’m(t - f?) - i?B(t - TT)
i =~CGy (t - 77) ~ 4 (t - 77)
L I:qu + R lygq = Usy — Usp

l68 = s

where 7 is the traveling time of the line 2. The Y- and G-
matices from (15) become:

Y, =diag(}, ¥, %, %)

G, =diag(G; G, G,)
G, = diag(G; Gy)

N3y

(E6)

N4

L2

(ET)

(

T2

E3)

Ni

Z.-.: (E4)

Fig.4 Example for the formulation of element and node equations
a) system configuration b) equivalent circuits

The partitioned nodal matrix from (16) has the form:

inductive elements
L-Nee( 0 0 -1 1:
R-Note|1 1 0O O
" s 0_100
cNto|0 O 1 0

resistive el.

i 0

o

o

cap. el.

0

=]

1
0
0

o —lo

Ll == E i e

0
3
‘o

- oo

The modified nodal matrix K’ from (17) differ from X in
zero elements instead the bold marked elements. But the ma-
trices K and K’ have theoretical importance only, because
the algebraic equation (21) can assembled from the network
scheme directly following the nodal admittance building rule.
By doing s, we find from Fig. 4b:

Note that the Y-elements of the LMs do not appear in the G-
matrices and the LMs currents, being state variables, are rep-
resent in the right side terms respectively. The capacitive
state space equation (24) has the form:

|

Ce

0 ¢

0

[

Uys

Una

8

G, +G,
0

0

G+,

I

Uy

My

VI. CONCLUSIONS

H.

bty tip,

Bt igp+iay

A new method for power system modeling by an algebraic
nodal equation and the state space equations of power system
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elements has been described. The advantages of the proposed
approach are:

1) The non-linear state space equations of the elements
are not linearized. They are not stiff and can be therefore
solved by explicit integration rules, avoiding time-consuming
iteration steps.

2) The algebraic nodal matrix equation (21) can be formu-
lated directly from the network structure without any topo-
logical tools. Its YG-matrix has a form which is similar to an
upper triangular matrix.

3) At each time step, the nodal voltages are available as
output variables.

4) The model structure is suitable for object oriented pro-
gramming and parallel algorithms (see Fig. 3).
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APPENDIX

Elements of L..:

L =L+L, =%(Lo +3L,, +21) =§(L(; +21)

1 1
L=1+L, =§(Lo +3L,, 1) =§(L{,—L,)
where:

L5=%(L0+2L,), L, 1

=§(LO—L1) and I]=L,+3L,

when Ly and L, =L are the zero- and positive sequence in-
ductivities. The elements of R,, are analogue terms, The sub-
transient voltages are calculated from:

u“=I'(SL;V'L+KSL;'uL=[u: ) uZ]T
Wt R Ly, - R K, =uy =[uz 0 O]T
WL=[WF [ WQ]T
R, =diag (R R, Ry)
kpcosd, kpcosd,—kysind,

Ky =|kpcos@, kpcos®, —k,sind, =£I(zY

krcos8. kpcosd, —k,sind,

with
S, =wt+89, 9,=9,-21/3 8. =8, +2x/3

and the coupling factors &g, kp and kg:

- Ly
ky = L,
Lyl + L)+ L L,
kp= Lt
° Lig(Lop + L)+ LopLop -
L
LQ

The elements of L;; are the rotor winding self- and mutual
inductivities:

L,+ L‘,Jr L 0
L, = L, Lis+Lp 0
0 0 L, + Ly
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