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Abstract. In general, multiphase transmission line and
cable models for transient programs, such as the EMTP,
base their solution on transformations between the phase
and modal domains. The main difficulty with these models

is the synthesis of the frequency dependent transformation

matrices. This paper presents two line models that circum-
vent this problem by writing the propagation functions di-
rectly in the phase domain and thus avoid the use of modal
transformation matrices. The first model (developed in
connection with our work on corona modelling) avoids the
use of modal transformation matrices by separating the
ideal-line travelling effect from the losses effect (resistance
and internal inductance). The second proposed model is a
full frequency dependent distributed parameter model
based on idempotent decomposition. By using idempotents
instead of eigenvectors as the basis for modal decomposi-
tion, the problems associated with the indeterminacy of the
frequency dependent eigenvector functions are eliminated.

Keywords: Transmission line modelling, EMTP simula-
tion, phase-domain modelling, idempotent analysis.

1. INTRODUCTION

Overhead transmission lines and underground cables
are the basic transmission links across a power system.
Wave propagation and distortion along lines and cables
affect the waveshapes reaching the system equipment
and the associated stresses upon these equipment.

Despite their importance in transient studies, the accu-
rate modelling of transmission lines in time domain si-
mulations is still not fully satisfactorily resolved. Good
time-domain frequency dependent transmission line and
cable models, based on Wedepohl/Hedman's theory ({3,
4]) of modal decomposition of natural propagation
modes (eigenmodes) are available in the EMTP program
[1, 2]. The main problem with these models is the fre-
quency dependence of the transformation matrices
(matrices of eigenvectors) that connect the modal and
phase domains.

This paper introduces two new line models being de-
veloped at the University of British Columbia. These
models avoid the use of transformation matrices to relate
the decoupled eigenmode propagation in the modal do-
main to the coupled-mode propagation in the phase do-
main. Since in their final form the equations are solved
entirely in phase coordinates, these models can be re-
garded as phase-domain line models. They differ, how-
ever, from other recently proposed phase-domain models
(e.g., [11]) in that the frequency dependent wave propa-
gation functions are still first synthesized in the fre-
quency domain, as in [1] and [2].

Lumped Line Model (zi-line).

The first proposed phase-domain line model (zi-line,
for "z-lumped ideal-line") has been developed in connec-
tion with our work on a wide-band corona model [5].
This line model follows the basic ideas advanced in [6],
except that it is formulated entirely in phase coordinates,
thus eliminating the problems associated with modal
transformation matrices.

The premise here is that if the nonlinear corona model
has to be lumped between relatively short line sections
then advantage can be taken of the space discretization.
This space discretization can be used to "simplify" the
modelling of the distortion part of the propagation func-
tion ([e~@X*]). That is, the distortion due to the resis-
tance and the internal inductance can be grouped into
one lumped frequency dependent impedance matrix in
phase coordinates [Z**()] while ideal propagation (at
the speed of light in the medium) due to the external
magnetic field [L*’] and capacitance [C] can be repre-
sented by an ideal-line segment. Since for ideal propaga-
tion all modes travel at the speed of light, the equations
for this part of the model (ideal line) can be formulated
directly in phase coordinates. This model is similar to
the constant-parameter line model in the EMTP (cp-
line) where the resistance is lumped in the middle and at
the end points of the line. As opposed to the cp-line
model, however, the proposed zi-line model can fully
take into account the frequency dependence of the line
parameters (in [Z'**(®)}) and exactly takes into account
the asymmetry of any arbitrary line configuration with-
out the need for a transformation matrix. The cp-line
model in the EMTP works in modal coordinates and as-
sumes that the transformation matrix relating mode and
phase is constant and real and, therefore, it cannot cor-
rectly simulate strongly asymmetrical configurations.
The only limitation of the proposed zi-model is that the
losses are assumed lumped and, therefore, a certain
number of line sections are needed to simulate the actual
distributed nature of these parameters.

Idempotent Line Model (id-line)

The second proposed line model (id-line, for
"idempotent-line") is a fully frequency dependent distri-
buted-parameter line model. This model is conceptually
similar to the current frequency dependent line models
in the EMTP (fd-line and g-line, [1] and [2]), except
that it overcomes the problems of these models with re-
spect to the frequency dependence of the modal trans-
formation matrices. The main problem in synthesizing
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the elements of the transformation matrices as functions
of frequency is that the eigenvectors that make up these
matrices are only defined up to a complex constant fac-
tor. This means, for example, that different scalings
("normalizations") of the eigenvectors will result in dif-
ferent frequency functions for the elements of the trans-
formation matrix. The question of which one is the
"right" normalization is very difficult to answer. The
problem of multiple-choice eigenvector functions is ag-
gravated in the case of repeated eigenvalues, which oc-
curs in certain regions of the frequency spectrum. The
eigenvectors for N repeated eigenvalues can lie any-
where in a given N-dimensional plane.

The proposed id-line model solves these problems by
avoiding the use of eigenvectors as base functions for
modal decomposition. Instead, the phase-domain propa-
gation function [e~%*] (matrix function) is expressed as
a linear combination of the natural propagation modes
e™"* (scalar functions) with idempotent coefficient ma-
trices. The idempotent matrices [7] result from column-
row products of the matrix of eigenvectors (modal trans-
formation matrix) and its inverse, and are uniquely de-
Jfined, independent of the particular scaling of the
eigenvectors or of the multiplicity of the eigenvalues.

2. ProPOSED LuMPED LINE MODEL (ZI-LINE)

The modelling of transmission lines is based on the
travelling wave equations, which can be expressed, for a

given frequency o as

2
£:ix—‘z’=[z'x’]v and %:[YZ}I m

where [ZY] or [YZ] are full matrices that couple the
propagation of voltage and current waves in all the
phases. The series impedance matrix [Z] is a full matrix
with elements of the form

Zy=Ry+jo(L;"+ALy) 2)

where R;; is the resistance of the conductor plus the
correction for the ground return effect, » is the fre-
quency, L;’“ is the inductance related to the external
flux, and AL; is the inductance related to the internal
flux inside the conductor plus the correction for ground
return. Matrix [Z] can thus be rewritten as

[Z] = [Z%] +jo[L*] 3)
[Z] = [Z=)+[Z25] @
with  Z* =R +joALy %)

The shunt admittance matrix [Y] can be written as
(assuming conductance G = 0) :

[Y]=jo[C], with [C]=[P]" (6)

[P] is the Maxwell coefficients matrix. The [Y]matrix

does not require any corrections for ground return and

contains only elements that depend on the capacitances

(geometry) of the system. With equations (3) to (6), we
can rewrite [YZ] as

[YZ]=jo[CI(ZP*]+jo[L™]) (N
[YZ] = jo[Cl[Z"*] - o*[C][L*] ®

Equation (8) shows how the product [YZ] can be ex-
pressed as the combination of two main components: the
first one related to the losses and ground effect correc-
tions and the second one related to the ideal
propagation.

If we assume that the effect of the losses term is small
compared with the effect of the ideal component, then
we can lump the losses and obtain the model shown in
Figure 1. This condition is met when the section length
is small. In the general case of frequency dependent
parameters the term [Z*%(w)] is a function of both the
frequency and the section length.

Modelling of the Multiphase Ideal Line

Once the impedance corrections ([Z/*]) are extracted
from the complete line model, the ideal transmission
line can be easily modelled in the phase domain. Be-
cause the travelling time 7 is the same for all the modes
and the solution of the system of travelling wave equa-
tions is decoupled, Dommel's ideal line equation [8] for
the time-domain single-phase case can be rewritten for
the multiphase case, as illustrated in Figure 2. Using cir-
cuit theory, the terminal voltage vectors vi(f) and v.(f)
can be expressed as functions of the terminal current
vectors ir(f) and im(?), the characteristic impedance ma-
trix [Z;], and the history source vectors e,(f) and
€»(f) . The history source vectors are calculated at each
time step as functions of past values, through the
expressions

ewn(t) = Va(t—1) + [Zc] im(t_ T) &)
emn(0) = Vi(t=1) + [Zc]ix(t—7) (10)
with  [Z.]=[Y]{[Y][Z=]3 2 (11)

In this case, the matrix [Z.] represents the coupled
system in the phase domain and is a full matrix. The im-
plementation of this model in the EMTP is similar, with
small modifications, to the standard coupled R-L model
[9]. Like in the case of the single-phase ideal line model
in the EMTP, the multiphase ideal line model is inde-
pendent of the integration rule, and represents an exact

Corrections for losses Ideal line, only

and internal flux extemnal flux
_WLVVV -~
— j—-
— }-
1
[z L™ [C]
% 7% % %

Figure 1. Separation of basic effects in the zi-line model.
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Figure 2. Multiphase ideal transmission line

model in the time domain.

solution of the line equations. If nodes are numbered se-
quentially at the terminals of the line, the resultant con-
ductance matrix [G] for the line will be a block diagonal
matrix, as shown in Figure 3.

Modelling of the Lumped Section

For the general case of frequency dependent line para-
meters, the elements of the matrix [Z"*(w)] are fre-
quency dependent functions, and they can be synthesized
by rational functions approximations, as in the frequency
dependent line models in the EMTP [1, 2]. Here, in
order to illustrate the basic properties of the proposed
model, the case of line parameters evaluated at a single
frequency will be explained and the model will be used
in comparisons with the EMTP's constant parameter and
frequency dependent line models.

The matrix [Z/**] represents, mathematically, a resis-
tance and an inductance in series. In the physical phe-
nomenon, however, it is difficult to separate the "series”
and "parallel" effects. Actually, in a minimal solution
(one R and one L) a parallel R-L combination around a
given frequency point represents the skin effect much
better than a series R-L (which represents no skin effect
at all). A minimum realization of the proposed model for
the losses is shown in Figure 4, for a two-phase
example. A series resistance R, is added to the R*L*
parallel combination to satisfy the dc condition (R =
R,). In the full frequency dependent 1mplememat10n
additional R-L parallel blocks, resulting from the asymp-
totic fitting procedure of [1, 2], provide a full-accuracy
synthesis over the entire frequency range.

As indicated, each element of the {Z/**] matrix from
line constants is replaced by an equivalent circuit
through the equations:

(coL)

Ykm

Figure 4. Equivalent constant parameter circuit for losses.

where R and L are the real and imaginary parts of the
corresponding element of [Z].

The multiphase [Z"*] equivalent can be implemented
in an EMTP's time domain type solution using the pro-
cedure explained in [9] for coupled R-L elements. The
basic equations, with the trapezoidal rule of integration,
for the equivalent resistance matrix [R*?] and the history
current-source vector hy,, are

[R¥]=[Ro ] + [R*¥] 13)

with [Re%] the equivalent multiphase resistance for
the discretized parallel R*" - [ circuit.

bin(t) = [AlVim(t—Af) +[B]h(t—Af)  (14)

with [A] = 2Re0]" Rewr] 227 T e ey

ar -1
and [B]= [RT ([Re7) 2[R IR 22 |y 15)

Short-Section Transmission Line Solution

The phase domain solutions of the ideal line section
and the [Z'**] section can be combined to simulate a
short section of a transmission line. For the short-sec-
tion model, the part corresponding to [Z°=] is divided
into two sections. Each half section of [Z'*] is added at
the ends of the ideal line section, as shown in Figure 5.

A set of simulations were done to study the relation be-
tween the section length of the zi-line model and the fre-
quency of the study. The transmission line used for the
testing was a typical flat-configuration three-phase 230
kV line. The base case is shown in Figure 6 and consists

RP = + (R-R,) and LP¥ = (R=Ro)’ W=R) .1 (12)  of one sinusoidal source attached to node a and different
®’L resistance terminations at the other ends. The source fre-
quency was set equal to the frequency used for the cal-
B ] culation of the line parameters. The time-domain
-1
[Zc] . .
(G- | [R2] [Le?] R2] |
: and and and
[Zc] [aL/z] [cl [AL/2]
- —
Figure 3. Conductance matrix for the ideal multiphase transmission line Figure 5 - Proposed line-section for the zi-line model.
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response of the zi-line model was compared against the
solution obtained with the constant-parameter model of
the EMTP. By repeating this process for several fre-
quencies an empirical relation between the length of the
line-section and the frequency of the analysis was estab-
lished. The results are shown in Figure 7 and they give
the recommended maximum length of the zi-line section
that could be used for a study at a given dominant
frequency.

Full-Length Transmission Line Solution

The solution for a complete transmission line is ac-

complished by connecting several of the zi-line short- -

section models in cascade. With an appropriate ordering
of the nodes, the resultant conductance matrix for the
full transmission line is a block diagonal matrix. The re-
sultant blocks are combinations of the matrices [Z,]
from the ideal line (Fig. 3) and [R*] for the loss net-
work (equation 13).

The implementation of the final zi-line model was
done in a stand-alone program written in ADA-95 and
several cases were tested. The results of these cases were
compared against the constant parameter (cp-line) and
the frequency dependent (fd-line) models in the EMTP.
Figure 8 shows the results when a unit step voltage is in-
jected at t = 0 into node a in the system of Fig. 6. For
comparison purposes, the line was assumed balanced
(the cp-line model and the fd-line model are theoretical-
ly exact only for balanced lines). The line parameters for
the cp-model and for the proposed zi-model were calcu-
lated at 5000 Hz. The total line length is 100 km; sec-
tions of 5 km were used for the zi-model and of 10 km
for the cp-model. The time step was 1.6 ps.

Figure 8(a) shows the induced voltage at node c, while
Figure 8(b) shows the receiving-end voltage at node d.
These results illustrate how, in general, the response of
the proposed zi-model is closer to the response of the
frequency dependent model than that of the constant
parameter model. As can be observed, both, the shape
and the magnitude of the waveforms produced by the zi-
model follow reasonably well the behaviour of the fd-
model. This is particularly noticeable in the first reflec-
tions of the transient. It should be emphasized that in the
case of constant parameters used in these simulations,

a d

Q:I') IOQ%
. =
IOQ%
f
3]
10Q 1009%

Figure 6. Base case for analysis of the zi-line model.
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Figure 7. Proposed zi-line section length vs frequency of analysis.

despite its much better performance, the zi-model re-
quires basically the same computational cost as the cp-
line model.

3. IpEMPOTENT LINE MODEL (ID-LINE)

The frequency dependent line and cable models of [1,
2] are based on solving the line travelling wave equa-
tions in the "modal domain", using diagonalizing trans-
formation matrices. That is, the original full-matrix
propagation equations in phase coordinates,

a‘v h dil h
—7 = ZpYpVps and — = YpZpnllps (16)
are transformed into diagonal-matrix equations in

0.05

Voltage (V)

Time (s) x 10

(a). Voltage at node c.

0.08}

Voftage (V)

0.06}

0.04

0.02p

Time (s)x 10" 3

(b). Voltage at node d.

Figure 8. Comparison between the zi-line model , the constant-parameter
EMTP model and the frequency-dependent EMTP model.
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modal coordinates

d*v,,
de

d*1,,
dx?

=[YuZnlnw (17)

by the transformations
[P]= eigenvectors of [Z,,Y p,] and (18)

[Q] = eigenvectors of [Y psZpk] 19

The line model of [1] makes the simplification of as-
suming constant (frequency independent) eigenvector
matrices [P] and [Q], while the cable model of [2] syn-
thesizes the frequency-dependent elements of these ma-
trices with rational functions.

A fundamental problem of the eigenvector description '

(modal transformation matrices) is that eigenvectors are
not uniquely defined. In the case of distinct eigenvalues
individual eigenvectors can be multiplied by arbitrary
complex-number scaling factors and the new [P] or [Q]

matrices will still be valid diagonalizing matrices. In the
case of N repeated eigenvalues the corresponding eigen-
vectors can be anywhere in an N-dimensional space.
This freedom in the location of eigenvectors may lead to
serious mathematical complications in formulations
based on synthesis by continuous frequency-domain
functions (for example, by rational-function approx-
imations). '

The problems related to the indeterminacy of the ei-
genvector solution can be avoided if the line modelling
problem is formulated not in terms of eigenvector de-
composition but in terms of idempotent decomposition.

A full idempotent-based transmission line model is
currently under development by our research group. Due
to space limitations in this paper, however, only the fun-
damental principles of this model will be introduce here.

Idempotent-Based Propagation Equations

The concepts and properties of idempotents used here
are taken from reference [7]. Basically an idempotent
matrix [I;] is a matrix that has the property

L) =[1] (20

and, of course, [I;]” = [I;] for any integer n. From this
apparently innocuous property one can intuit that a ma-
trix function response expressed as a power expansion
based on idempotents will bring out the basic constituent
responses of the system (eigenmodes). The application of
this concept to the transmission line propagation equa-
tions is discussed next.

Consider, as in [1, 2], the line propagation function for
each decoupled line mode

A;= e = g Tnlg /0N @n

where 1; is the time-delay (phase velocity) of compo-
nent mode i. In the frequency dependent line and cable
models of [1, 2], the distortion and attenuation function
e~ js synthesized by a minimum-phase rational func-
tion p;(®), and 4; is expressed as

4i(0) = pi(@)e T (22)

Equation (22) defines (in a synthesis form suitable for
modelling) each natural propagation mode of the line.
In the conventional approach, the component modes are
combined into a coupled-mode propagation in the phase
domain using the transformation matrix of eigenvectors

[QI:
[Apn]= [QUAAIQ] (23)
where [A,] is the diagonal matrix with the natural
component modes.

For a frequency dependent [Q(w)], equation (23) leads
to convolutions in the time domain. To avoid these nu-
merically very expensive convolutions, reference [2] syn-
thesizes the elements of [Q(w)] by rational functions.
Difficulties encountered with this approach in the
modelling of overhead lines seem to be related to the
indeterminacy of the frequency functions in [Q(w)], par-
ticularly in frequency regions with repeated eigenvalues.
(An interesting theoretical analysis of problems related
to repeated eigenvalues can be found in [10].)

As indicated earlier, indeterminacy problems can be
eliminated when the formulation is done in terms of
idempotents instead of eigenvectors. The break-up of
(23) in terms of idempotents can be done as follows. (A
three-phase line is used to explain the procedure, which
applies equally to an N-phase line.)

1) Write [Q] in terms of its constituent columns:

[Q]=[C: C2 Cs5] 4)

where C; are the eigenvectors.
2) Write [Q]! in terms of its constituent rows:

R,
[QI'=| R, 25)
R;

Even though not necessary in the derivation, it is inter-
esting to mention that when the eigenvectors of [P] and
[Q] in (18) and (19) are normalized according to the Eu-
clidean norm (vector length equal to one), then
[Q]"' = [PF and the row vectors in (25) correspond to
the eigenvectors of [P].

3) Write (23) in terms of the column and row partitions
in (24) and (25)
[Ap4]= [QNARNQI™ (26)

A1 0 O R,
[Apm]=[C1 C2C3] 0 4, O R, 7
0 0 A R3

thus giving
[Ap]=[CiRi M1 +[C2R: U2 +[C3R3 3 (28)

In (28),
[CiR;] = [3x3] idempotent coefficient matrix i (29)
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Figure 9. Fitting of idempotent elements.

and the 4; terms are as in (22).

Equation (28) gives the phase-domain propagation
function [A,x(®)] in terms of the natural (modal) propa-
gation modes 4; = e where the y;'s are the eigenva-
lues of [YZ]'2. Equation (28) then retains the natural
eigenvalues of the problem while expressing the result in
coupled phase coordinates. Since the idempotent coeffi-
cient matrices [C;R;] are the product of a column of the
eigenvectors matrix [Q] times a row of its inverse [Q] !,
the result is independent of the scaling factors used in
the eigenvectors. The elements of the idempotent ma-
trices as functions of frequency are ,therefore, uniguely
defined and the problems of frequency continuity of the
eigenvector functions are eliminated.

For the time domain implementation of the model, the
idempotent matrices are synthesized by rational function
approximations. The functions to be synthesized are
generally smooth and simple to fit using the asymptotic
tracing technique of [1, 2]. Figure 9 shows an example

of this synthesis for a diagonal and two off-diagonal el-

ements of the idempotent coefficient matrix for mode 3
of a single-circuit transmission line (The idempotent
functions been fitted were obtained with the help of the
Newton-Raphson eigenvector tracing technique of [12]).

4. CONCLUSIONS

The major stumbling block in modal domain model-
ling for time domain simulations has been the frequency
dependence of the transformation matrices that relate
modal and phase coordinates. Two line models are pres-
ented in this paper that avoid the use of transformation
matrices. The first model separates the losses (resistance
and internal inductance) from the propagation channel
(external inductance and capacitance). Propagation is
then simulated as ideal (at the speed of light in the me-
dium) and equal for all modes. The delays and shaping
effects of the losses are simulated by lumped cou-
pled-impedance matrices. This model provides an in-
expensive alternative for full frequency dependent line
modelling. Its only limitation is that the line has to be
sectionalized into a reasonable number of segments so as
to simulate the actual distributed nature of the losses. In
this regard, it is particularly suited for corona modelling
where the corona phenomenon also needs to be

sectionalized.

The second proposed model adopts the "opposite" phil-
osophy of the first one. Instead of trying to idealize the
propagation characteristics, it tries to exactly maintain
the individuality of the natural component modes of
propagation. This is achieved by using idempotents
theory to express the coupled phase-domain propagation
function as a linear combination (with matrix coeffi-
cients) of the independent modal-domain propagation
modes.
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